Introduction

Sequencing is an aspect of program design.

Sequencing describes the flow of control in a program, e.g. answering the

question: when a program element executes, what element will be executed next?
Most languages encourage statement based sequencing.

Another common sequencing style is the use of full preemption - threads of

code execute in a synchronous (statement based) manner.
The operating system's dispatcher decides that a given thread should run.

The use of synchronous sequencing is a design choice. Other choices are
possible. Ilist some of the possible choices and attempt to draw diagrams of
their flow.

Statement
1. Sequencing 1.step 1
Specified 2.step 2
by — 3.step 3
Satement

Placing N. s.t-ép N

Statement-based sequencing is common in most current text-based PLs’.

Statements are executed in an order based on their textual appearance.

Subroutines are executed in stack-based sequencing. (See "Stack").
Statement based sequencing is caused by text-only syntax.?

Routines are called in a synchronous manner.® See stack-based sequencing.

Stack

I’ 4.Creturnsto A

Routine A Stack
Sequencing
1.AcallsC Specified
by
Dynamic
Breadcrumb — Call
(State) Chain
(Return address) (State
Saved on
Routine B Stack)

2.AcallsC

Routine C

3. Creturns to A

Stack-based Sequencing

Stack-based sequencing is the common form of CALL /RETURN.

' Programming Languages
2 A form of accidental complexity.
3 |.E. the caller waits for the callee to execute a RETURN statement.

A routine transfers control to another routine and waits for it to complete its

processing.

The caller uses a stack - i.e. an optimized collection” - to create a list of

parameters to the callee, then leaves a breadcrumb (return address) on the stack.

The callee performs processing and leaves a return value (usually a single

value) and uses the stacked breadcrumb to return control to the caller.

Stack based sequencing is caused by’ text-only syntax.

Spawn and Wait

Parent
(all work done in parallel, parent collects results)

Parent

Spawn

worker worker worker

4 The stack is an optimized Collection. A stack is an Array allocated in "inexpensive"
reusable, memory. An Array is a Collection with most of the housekeeping details
optimized away. A Stack is an Array is a Collection with items stored in contiguous
locations. Early computer architectures, e.g. some IBM 360s, did not have hardware-
supported stacks, and used special instructions, e.g. BALR, to create linked lists of
optimized islands of memory. The idea of scoping was conflated with memory and CPU
optimization as was common in early forms of computing.

5 A form of accidental complexity.

In spawn and wait sequencing, the caller "spawns" processes for each child /
called routine and then waits until all of the child processes have died (and left

results, if any, in distinguished locations).
Spawn and wait has been implemented in several forms:

e UNIX® fork() and waitpid()

e Bash (sh, etc.) & and wait commands

e hardware DMA (Direct Memory Access)

e 'par" statement in several "parallel" languages

e node,js (anonymous functions provide wait() operation)

e etc
Spawn and wait has been traditionally conflated with full-blown operating

system processes (aka threads). Processes have been traditionally conflated with

solutions to the (harder) problems of time-sharing and memory sharing.

Spawn and Wait 2

Sequencing
Specified by
n

are
(all work done in parallel, parent collects results)

The above diagram is simply another way to diagram a spawn and wait

design.

See spawn and wait.

Server

A 4

client

—[——>| queue Server M

> client

» client

response

b

Server-based
Sequencing
(same as Hoare Monitor - one writer)
(e.g. multiple browsers, 1 server)

A server based sequencer is one where a single process contains and hides a

resource. Client processes send requests for resource data.

[Note that a Hoare Monitor is a essentially a server-based sequencer in the

context of time-sharing and memory sharing. See Hoare Monitor for further

discussion.]

Explicit Sequencer

Sequencing
Specified by
Sequencer
(not show: how to distribute work in pieces, how to collect results)

sequencer ~ ——done

worker worker worker

=

—% result

In the Explicit Sequencer design, work is sent to all workers, then a Sequencer

process dictates the order in which each worker executes.

Puli

Sequencing
Specified
by
Component
Placement & Requests

[€—REQ— [€—REQ— e—REG————
—start——>| for me? item—» for me? item for me? result———>

In a pull-based sequence, workers are arranged in a chain and respond to

REQuests from downstream components.

Preemption

Preemptive
Model
(simplified)
Sequencing by Edict

In a preemption-based sequence, each worker is given a private memory space
and stack. A distinguished routine - the dispatcher - determines the order in

which workers execute.

The dispatcher routine is, typically, supplied by the O/S°.

Hoare Monitors

Hoare Monitors operate like the server sequencer, but do so in an environment

where memory sharing and /or CPU minimization” is employed.

A monitor is a server® and all other processes can be clients of the server.
"Requests" are made by calling routines that are protected by the monitor. The
0/S’ allows only one process to enter the monitor at a time, and all other
requesting processes are suspended and placed on a queue, waiting for the

monitor to become free.

6 Operating System - essentially a library.

7 reduced number of CPUs needed - usually as an optimization in the face of costly
CPU hardware

8 The execution thread of the server is provided by the calling processes.

9 Operating System

Processes inside the monitor could signal events to other (waiting) processes.

The original manifestation of Hoare Monitors required a rendezvous between

the process in the monitor and a process waiting on a monitor signal.
The requirement for rendezvous was relaxed to allow deferred signals™.

See, also, "Server" for a discussion of the basic pattern.

10 e.g. in the Turing+ language

Hierarchy

Event 2
Y

event

y_Sub —

[sub-sub] Window
Widget Widget

Hierrachical
Sequencing

(e.g. windowing systems)

Hierarchical sequencing is a sequencing style where children components are
contained within parents, like Russian dolls. As incoming events arrive, the
parent gets first-right-of-refusal to act on the events. If the parent does not act on

the events, the events are passed on to contained children, recursively.

This pattern is common in windowing systems.

Handshake Protocol

« Request

Y

AURTNAR

Handshake
Sequencing
(e.g. network protocols)

In handshake sequencing, a component sends a request to another component
(instead of directly "calling" it).

The receiving component responds with a "handshake" message - usually an
ACK in the case of successful receipt. The receiver might respond with a NAK
(not acknowledge) if it deems that the message was garbled, or, the receiver
might not respond at all.

The requestor expects one of 3 responses:

1. ACK - means that the receiver received the message and is acting on it,
2. NAK - means that the receiver received a message, but has deemed that
the message has been damaged in transit - the requestor resends the
message oft, after several retries, declares a send error of some kind,

3. silence - the requestor times-out waiting for an ACK/NAK from the
receiver - the requestor resends the message, or, after several retries,

declares a send error of some kind.

This handshake pattern is most often seen in network protocols.

10

I would expect to see this pattern arise more often with the advent of (more)
distributed computing and IoT.

Filter Pipelines

stateless
code code code

FP-based
Sequencing
(restricted form of FBP ;
parameters contain all state)

Filter pipelines form chains of routines. Each routine in the chain has no side-

effects,' or its side effects are isolated from the rest of the system.

Information flows strictly down the pipeline, e.g. from left to right. Feedback

loops do not exist.
Pipeline sequencing has been implemented in:
* Bash pipelines
e FP filter chains
e Smalltalk ";" operators

] etc.

In a filter pipeline pattern, the data flowing between components contains all of
the state.

(See, also, FBP, for a pattern of data flows which allows feedback).

" In memory-sharing systems.

11

Flat Message Passing

message queue message queue

node < » node

message queue

\ 4

node

A

Flat Message Passing
Sequencing

In message passing, every component has an input queue of messages. All

components are asynchronous and can process messages at different speeds.

Flat message passing does not scale well to large systems (as is the case for
anything that is designed in a flat manner). Flat message passing can be tamed

and scaled using hierarchical scoping.

FBP (Flow Based Programming)

J | \4
code b code M code

- |

FBP-based
Sequencing
(IPs contains all State)

Each component is a concurrent machine.

12

Concurrent machines communicate with one another via bounded buffers.
Components have input and output ports that are connected to bounded buffers.
Data flowing between components is called IPs (Information Packets).
Components can read-from and write-to ports in a random manner.

A component suspends if it attempts to send to an output port which has a full
buffer.

A component suspends if it attempts to read from an input port that has an
empty buffer.

FBP can route IPs in a feedback and feedforward manner.

FBP is similar to FP,!2 in that all state is contained in IPs.

FBP'3 can be used to construct filter pipelines, but FBP is more general in that it
allows feedback and feedforward. Unlike pipelines, FBP allows connections that
"skip over" components in the chain and connections to components that come

"earlier" in the chain.

FBP systems have been, traditionally, simulated on top of preemptive

sequencing.

(See, also, https:/ / groups.google.com /g / flow-based-programming/c/
15SkeB40iwE)

12 Functional Programming
13 Flow-Based Programming

13

https://groups.google.com/g/flow-based-programming/c/l5SkeB40iwE
https://groups.google.com/g/flow-based-programming/c/l5SkeB40iwE

Daisy Chain

Sequencing
Specified
by
Component
Placement

—work——>| for me? ——pass—>| for me? pass for me?

... more ..

work work work

worker worker worker

. T

— result

A daisy chain sequence arranges components in a chain.
Each component has a unique address.

Each component in the chain inspects incoming messages to determine if the
message is addressed to them. If the message is not addressed to the given
component, the message is forwarded to downstream components. If the
message is addressed to the given component, the message is not forwarded and

is processed by the component.
Component outputs are all tied together to form a result. One component

processes the message and creates one result (which is fed to the common

output).

14

https://jpaulm.github.io/fbp/

If no component processes the message, either
e the message is completely ignored, or,

* the last component in the chain produces some sort of exception result.'*

A daisy chain system has, logically, two output ports - one is the result,

another is an exception.

In a daisy chain, the earlier components in the chain receive priority over later
components in the chain. In general, fairness doesn't matter as long as the

"work" gets done.

4 Note that the sender might also be the "last" component in the chain.

15

Blockchain

(Verifier)
executes slave
actions for cycle

Y

(Verifier) (Verifier)
Executes executes slave
Mastering actions I actions for cycle
for 1 Cycle

(PBFT state
machine)

A 42 A (Verifier)
executes slave
actions for cycle

Y

Blockchain
Sequencing
(new master every cycle)
All verifiers are potential
Masters

A blockchain, in current technology, is a spawn-and-wait system wherein the
parent node is changed on every "cycle" (defined by the blockchain algorithm).
The choice of "parent" is randomized to prevent attackers from guessing the

future behaviour of the system.
Blockchains typically consist of two parts:

1. cryptography

2. sequencing.

16

Reactive

code or hierarchy
message—>| stateleful

code mespage

stateleful
code

stateleful
code

message—————>

child
child

Arrowgrams
Sequencing
each component synchronizes its children (if any)
(each Component contains
code or hierarchical composition
of child Components)

In the reactive’ pattern, components receive events (aka messages) and react

to the messages.
Events (messages) are queued.

One message is processed, fully to completion, before another message is

taken from the input queue.

A reactive system is a system of concurrent components wherein every

component processes events in a hierarchical pattern.
Components are isolated from one another.
Components can be implemented as composites or leaves.

It is not possible to discern how a component is implemented without looking

inside the component.

15 Arrowgrams™ is the trade name of a reactive system that I am developing.

17

Components have multiple input ports and multiple output ports.

Input events are queued (on a single queue) and a component processes an

event to completion before processing another event.

Aleaf component processes an event using some other technology, e.g. by

using a specific programming language.

A composite component contains children components. A composite
component process input events by forwarding them to its children. A composite

component is considered "busy" if any of its children are busy.
The reactive pattern is a realization of the divide and conquer paradigm. A

problem can be dissected into two components - the leaf and the rest (conquer and

divide, resp.).

18

	Introduction
	Statement
	Stack
	Spawn and Wait
	Spawn and Wait 2
	Server
	Explicit Sequencer
	Pull
	Preemption
	Hoare Monitors
	Hierarchy
	Handshake Protocol
	Filter Pipelines
	Flat Message Passing
	FBP (Flow Based Programming)
	Daisy Chain
	Blockchain
	Reactive

