
1

Keyboard Debouncing
When writing code to debounce a keyboard, it was found that the magic

number was 20 msec (twenty milliseconds).

If a keystroke took longer than 20 milliseconds to be recognized, the keyboard
"feels slow" to the human operator.

If the software sampled the keystrokes too quickly (e.g. 1 msec), then the
sampler found that the key switch actually, physically, bounced (1 to 0 to 1 to 0,
etc.) and settled down to a final, steady value before the magic number of 20
msec.

I don't know how this magic number has changed with respect to more
modern keyboards based on newer technologies.

Music Software
Music software - DAWs (Digital Audio Workstations) - need to worry about

sluggishness and latency.

Piano-style keyboards are polyphonic - the musician can press more than one
key at once (or in sequence) and expects to hear notes "right away".

Playback of multiple tracks is/was also a problem. When multiple tracks are
played by the DAW, the musician expects to hear them all "in sync". If the
number of tracks (and effects processors contained in the track - e.g. reverb)
exceeds the ability of the processor to keep up, the music will sound sluggish and
"out of sync".

Faster hardware has ameliorated this problem. The same software runs faster
and can process more tracks before maxing out. I expect that software built with

2

preemptive multitasking (i.e. the norm) will max out sooner than software
optimized to handle keyboard reading.

Game Industry
I expect, but don't have the direct experience, that this problem also affects the

game industry. Production Engineering of software can save money when
shipping a zillion xboxes.

IoT
I expect that IoT will run into this problem. Using Linux on a small processor

is (usually) over-kill for what is actually needed, and, Linux could be production
engineered away if economy of scale requires it.

Concurrency (and parallelism) can be built less expensively than by using
Linux.1

One needs to make a trade-off assessment - how many $'s can by saved in

hardware by spending $'s on software optimization? And, reliability enters the
equation, too - preemptive multitasking is notoriously hard to get right (http://
www.cs.cornell.edu/courses/cs614/1999sp/papers/pathfinder.html).2

1 See my various essays, e.g. "Box-and-Arrow for Concurrency".
2 This description claims that the problem was due to lack of correctness proof. The

real problem, IMO, is that memory sharing and full preemption were used.
Understanding that full-preemption is only one of the possible solutions to the problem
(an over-kill, over-generalized solution), might have generated a different solution and
the bug might have been detected earlier.

	Keyboard Debouncing
	Music Software
	Game Industry
	IoT

