
Sheet1

Page 1

Role Sub-role Technologies
Software Architecting

multiple paradigms

whiteboards
diagrams
code snippets
pseudo code
DSLs

Drakon
StateCharts
UML
indirection

UX Architect

Humane Interface (Jef Raskin)
Engineering

Realization Engineering

Correctness Engineering
proofs, etc.

UX Engineer

Error Handler Engineer

Throw / catch
Signals
Events

Maintenance Engineer

UX design is a divide-and-
conquer activity

A.O.C. (Aspect Oriented Pro-
gramming)

Sheet1

Page 2

Refactoring
D.R.Y.

Optimization Engineer
Profiling

Security Engineering
Test Engineer

Incoming Test

Black Box Testing
White Box Testing
Q/A
Scripting
Back-to-back testing
Sikuli

Release Engineer
CD
Dashboards
CI

Implementation
Q/A
Maintenance
Testing

Software for Business

Word

Hardware production test used
HP Trace Analyzers that
would generate a GUID for
every test (including sequen-
cing over time) for a “golden
unit” (known to be good),
when GUID didn’t match in
production unit, then further
testing was used to determine
where the fault was (kind of a
Canary CI, replacing Unit test
with faster/cheaper tests
which signalled Go/no-go
only)Teaching Software to

Children
different set of concerns
than providing tools to Pro-
fessionals

Rhetorical Question: would
you drive across a bridge de-
signed by a gifted child?

Rhetorical Question: would
you drive across a bridge de-
signed by a Professional who
isn’t an Engineer? E.g. a
Dentist?

Sheet1

Page 3

Excel
Visio
Scapple
Scrivener

HyperCard
VisiCalc

e.g. accounting software

absolute addressing
grid layout (VisiCalc)
fixed layout (HyperCard)
few options
“obvious”

transitional (only)

desktop
filing cabinet
typewriter
TV schedule
magazine articles
typewriter keyboard
house phone
retail
libraries

desk calculator
piano

audio
whiteboard
office
house
automobile

Software for Domain
Experts (not Pro-
grammers)

people with expertise who
see a need and want to
learn “just enough” pro-
gramming to fill that need

Software Designs
Based on Existing
Paradigms

will be supplanted by designs
based on computing-driven
Paradigms

expensive all-in-1 com-
puters

recording soundboard (e.g.
mimiced by GarageBand,
ProTools)

Sheet1

Page 4

comments

generalist
not a single paradigm purveyor

shows ability to view problem from many angles

design a rudimentary piece of the UX

define first-cut of realized architecture

define parameters & timing for responsiveness
usability testing
feedback to UX architect

create procedures / scripts for Q/A

http://drakon-editor.sourceforge.net/

test it (for UX-ness, not for robustness) before
proceeding
final design will be a composition of the various
pieces
once designed, Engineering makes it practical
and robust

iterate design with Architect until realizable and all
I’s dotted and T’s crossed

analyze testability of product (& suggest
changes)

http://drakon-editor.sourceforge.net/

Sheet1

Page 5

remove Architectural indirection if appropriate

Sheet1

Page 6

New paradigm: Netflix
New paradigm: blogs
New paradigm: tablet, phone
New paradigm: iPhone
New paradigm: Amazon
New paradigm: internet

New paradigm: IoT

loops

new paradigm: video+audio, YouTube
New paradigm: ?
New paradigm: WFH
New paradigm: conco
New paradigm: fat bike, ebike, public transit

New paradigm: what is the new O/S? Do we
need an O/S?

Sheet1

Page 7

e.g. everything is Haskell – not
e.g. everything is an Object – not
e.g. everything is <xxx> - not

earliest drafts tested by Architect and Engineers ; later drafts
tested by Customer (Stakeholder)

Sheet1

Page 8

devise ways to break product

large systems can feed inputs to same kinds of systems

test suitability of all bought-in technologies (e.g. code from
GitHub)

	Sheet1

