On Compiling Diagrams to Code

Disclaimer
This essay is not meant to be an academic work.

It contains my opinions from 30+ years of experience in the Software field,

running a software consultancy.

As such, references, when included, refer to inspiration and may not be

thoroughly researched.

Introduction

This essay discusses a simple compiler that compiles diagrams to

executable code.

I believe that diagrams can express certain design elements more easily
than textual code. For example, many people draw box & arrow pictures of a
desired system on a whiteboard. Such diagrams form a “syntax” for system
design. This “syntax” can be made more concrete and can be automatically
compiled to code (the old idea of “executable specification” becomes a reality).
To make this transition, one needs to “think like a compiler builder” and ask
oneself “can I imagine compiling these graphics to code?”. For example,
diagrams of stick people and clouds probably cannot be compiled. Diagrams
of boxes and arrows can be compiled to executable code, when one creates

and follows certain conventions.

In my opinion, diagrams are most useful in the hands of professionals, not

children. Most real-world Engineering professions use diagrams, e.g. EE’s use

schematics, Civil Engineers use blueprints, etc.

In my opinion, diagrams should not be used to express ideas that are

already, sufficiently expressed in textual code, for example
a=b+c;

should not be drawn as a diagram. Such statements communicate

perfectly well when written in text form.

Text cannot express - conveniently - a network diagram, for example. A
network as text, is a list of components and a detailed “wiring list” between
such components and does not communicate the layout of the network to

other human readers. For such cases, diagrams excel.

In fact, I believe that a single language cannot express all of the nuances of
Software Design. I believe that multiple languages need to be used, e.g.
diagrams for software architecture, text code for implementation details, etc.
Already, we see many different languages being used in the software
creation / distribution pipelines, e.g. bash, npm, gradle, HTTP, CSS, yaml],
Docker, etc.

In this essay, I show how to create compilable conventions for drawing

such a network diagram and how to compile it to executable code.

The diagrams discussed here are hybrids - diagrams with text annotations.
A diagram does not need to express every possible operation. A diagram

needs only to express operations that are not conveniently written as text.
Most diagram editors do not make good code editors (Da$S - diagrams as
syntax). The creation of better DaS editors is discussed in another essay.

[Programmers use all 10 fingers, not just a single mouse].

For now, we will use a free editor called Draw.IO (https://www.draw.io/).

Draw IO exhibits the drawbacks of known diagram editors - e.g. one often

https://www.draw.io/

needs to use a mouse. Draw.IO makes assumptions about the drawing (it
begins automagically drawing lines between graphical atoms). Yet, Draw.IO

exists, is free and can produce SVG files.

The kinds of diagrams we are concerned with are the kinds of diagrams
that Engineers use (e.g. Electrical Engineers (schematics), Civil Engineers
(blueprints), etc.).

These diagrams are not meant to make software design easier for novices.

They are meant to add further meaning to software designs.
These are technical diagrams.

I believe that technical diagrams for software design have been overlooked
due to a bias that assumes that “diagrams are for kids”. In fact, many
technical diagrams for software design do exist - on whiteboards in just about
every software house. Whiteboard diagrams are, typically, not rigorous
enough to be compiled to executable code. I hope to show that compilable
technical diagrams are possible and that they do add information to a

software project that cannot be easily expressed as text.

The main goal of this essay is to show how modern tools and technologies
can be used to implement diagram compilers. We will not emphasise, here,

the reasoning behind use of such technical diagrams.

If you already know how a compiler works, you can skip the following
section. Note that, I use the “pass” model for compilers instead of the “tree”
model. These models are essentially the same, except that the “pass” model
uses a pipeline for the compiler and data in the pipeline moves, strictly, from
left to right. In the “tree”model of compilation, the tree is traversed
downward (top down) then upward (bottom up) - if one is more familiar with
the tree model, it might help to imagine that the tree has been flattened and
passed from left to right. I find that the pipeline model “keeps things simple”
- each pass does exactly one job instead of folding all compiler work into a

single textual script based on tree traversal. A major point of simplification is

to decompose a problem (in this case a compiler) into subsequent passes (like

a bash pipeline) instead of as a data structure.

Classical Compiler Technology

Classical compiler technology splits a text compiler into about four phases,

described below.

e Scanner
e Parser

e Semantic Pass
e (Coder

Note that this kind of technology is based on “old” ideas, such as : computers
are not fast enough to base compilers on backtracking, computers represent
text (characters) on the screen, but are too slow and inflexible to represent

other glyphs and diagrams on the screen.

The above assumptions led to a great deal of research into textual languages

and how to restrict languages to allow for compilation without backtracking.

Efforts such as PEG [Bryan Ford, http://bford.info/pub/lang/peg.pdf], TXL [Cordy,
https://www.txl.ca/] show that the above assumptions no longer hold true.

Scanner
The scanner takes in a stream of characters and outputs a stream of tokens.

The main job of a scanner is to ensure that downstream compiler passes do

not need to perform string compares.

https://www.txl.ca/

The scanner performs string matching to determine whether a string of
characters in a program match with keywords and operators in the language,

or whether strings of characters fall into the class of user-defined identifiers.

Once a match has been recognised, the scanner replaces the matched string
with a token that is known to all downstream passes. The main feature of a
token is that it can be recognised by downstream passes by a simple numeric

or symbolic comparison, instead of a full string comparison.

Depending on the design intent of the compiler-writer, a token may also
include information about the token and the matched string. For example, an
ID (identifier) token may be a simple integer coupled with a reference to a
table entry that contains the actual string of characters, the ID’s type

information (updated in later passes), etc.

Early compilers did not contain a scanner pass nor tokens, and they relied

solely on streq() operations everywhere. Such compilers ran more slowly.

Early tools, such as Lex [...], read descriptions of strings and converted
them into state machines to improve speed, much like the familiar regex().
The techniques of compiling string matchers into state machines are covered
in the Dragon Book [...].

Parser
The job of a parser is to check that tokens are correctly placed / sequenced

to fit the particular language being compiled and to signal errors if the tokens

do not form well-formed phrases in the language.

For example in C, the string “(x ==y)”, might be represented by the
sequence of tokens (represented by symbolic names):

tokLPar

tokIdent {ref. to table entry for ident “x”}
tokEqualsEquals

tokIdent {ref. to table entry for ident “y”}
tokRPar

In this case, each token, tokLPar, tokldent, tokEqualsEquals and, tokRpar
might be represented as Integers (scalars) and the extra information, enclosed
in braces ({}) would signal that tokldent has some kind of structured

information following it.
The string of five tokens, above, form a well-formed Expression in C.

The parser, also, has the job of discarding syntactic sugar and replacing
token phrases with shorter token phrases which contain only the information

necessary in subsequent passes.

For example, the Parser might re-emit the tokens in an RPN stream as

follows:

tokExpression

tokIdent {ref. to table entry for ident “x”}
tokldent {ref. to table entry for ident “y”}
tokEqualsEquals

Semantic Pass

A Semantic Pass has the job of checking the semantics of program token
phrases. The semantic pass doesn’t need to check tokens or the validity of
token phrases - these are verified in preceding passes (the scanner and the
parser). Checking the semantic validity of token phrases can be a complicated

matter, but is simplified by information generated by the preceding passes.

In general, the semantic pass needs to determine the scopes of all variables
(subject to scoping rules of the language) and the types of all variable (subject
to typing rules of the language).

In declaration-before-use languages, the semantic checker can be collapsed
into a single pass, whereas, in languages that do not follow the declaration-
before-use rules (and possibly require transitive closures over the complete

system), a semantic pass might consist of more than one actual pass.

Specifying declaration-before-use semantics assists the compiler writers,
but puts more onus on the users of the language (e.g. to declare objects earlier

than strictly necessary).

Thirty years ago, it was considered “reasonable” to off-load such

considerations to language users.

Today, with much faster hardware, it seems to me that encumbering the
software designer with rules that make compiler-writing easier for the
compiler-writer, is a false economy. All efforts should be used to off-load

mental strains from the software designers.

Allocation and Coding

After a program (a token stream) has been “certified correct” by preceding

passes, the compiler-writing job consists of creating code.
The act of code creation breaks down into, at least, two phases:

1. Allocation - figuring out where each variable, constant, parameter and
return value is going to end up in the memory space (stack, etc.).

2. Choosing code sequences (in the appropriate assembler) that faithfully
carry out operations in the higher level language (being compiled).

Allocation
For allocation, one needs to represent data-locations in some manner.

One method is to use a data structure called “data descriptors” [Holt, https:/
dl.acm.org/citation.cfm?id=24051].

Fraser/Davidson designed RTL [Fraser-Davidson, https:/people.well.com/user/
cwi/pro/Davidson%20and %20Fraser.
20The%20design%20and %20application%200f%20a%?20retargetable %20peephole %200pti

mizer.pdf], the method used in gcc.

Coder

A coder is the final pass in a compiler. Coders are also called “emitters”

and “back ends”.

It simply walks the stream / tree and emits code (as assembler text, or

binary) for a particular cpu architecture.

Another aspect of coding is “optimisation”. This pass can precede or
succeed allocation and emission, depending on design constraints and

implementation of various compiler data structures.

Coders often rely on a library known to contain certain operations that will
be included at run time (a “run time” library). The final emitted code is
linked with this library.

Coders/emitters/backends make trade-offs for speed vs. code (and data)

size.

Coders need to determine which cpu registers will be used. [Note that, in
a multi-process environment, each register which might contain data must be

pushed onto a stack (to save the value(s)) during context switches)].

https://people.well.com/user/cwf/pro/Davidson%20and%20Fraser.%20The%20design%20and%20application%20of%20a%20retargetable%20peephole%20optimizer.pdf
https://people.well.com/user/cwf/pro/Davidson%20and%20Fraser.%20The%20design%20and%20application%20of%20a%20retargetable%20peephole%20optimizer.pdf
https://people.well.com/user/cwf/pro/Davidson%20and%20Fraser.%20The%20design%20and%20application%20of%20a%20retargetable%20peephole%20optimizer.pdf
https://people.well.com/user/cwf/pro/Davidson%20and%20Fraser.%20The%20design%20and%20application%20of%20a%20retargetable%20peephole%20optimizer.pdf

Tree-Based Coding

See https:/ /en.wikipedia.org / wiki /

Compilers: Principles, Techniques, and Tools .

Optimization

A very common form of optimiser is a tree-based one. This kind of

optimiser is described in [Aho,Ulmann, et al, https:/en.wikipedia.org/wiki/

Compilers: Principles, Techniques, and Tools (“the dragon book”)].

A tree-based optimiser can convert a tree into a DAG and can easily reuse

code sequences and allocations that appear more than once.

A very simple form of optimisation is “peephole” optimisation. This
method executes after the coder phase and looks at the emitted code through
a “window” of some number of instructions. It pattern-matches the
windowed instruction sequence and replaces matches with “better” code
(faster or less space, etc.). Peephole optimisers can be built using very simple

tools, like awk.

Run-time Library

In older C compilers, the run time library was called “crt0” (C Run Time

Zero).

Run time libraries often perform startup and initialisation task, as well as
providing routines for certain repetitive code sequences (e.g. floating point)
that are better (space-wise) left as libraries instead of full-unrolled code

sequences emitted by the coder.

Portability

https://en.wikipedia.org/wiki/Compilers:_Principles,_Techniques,_and_Tools
https://en.wikipedia.org/wiki/Compilers:_Principles,_Techniques,_and_Tools
https://en.wikipedia.org/wiki/Compilers:_Principles,_Techniques,_and_Tools
https://en.wikipedia.org/wiki/Compilers:_Principles,_Techniques,_and_Tools

There has been a fair amount of thought put into creating machine

descriptions that reduce cognitive load for the compiler writers. For example,

OCG (orthogonal code generation [Cordy, https://books.google.ca/books?
1d=X00aMQEACAAJ&dg=bibliogroup:
%22Technical+report+CSRI%22&hl=en&sa=X&ved=0ahUKEwjg4Y7a7ZbiAhUMwIkKHf

zdD MQ6AEIMzAC]) allows one to declaratively specify a tree of code

sequences based on cpu architecture. The tree(s) specify how to map
operations, in some low-level form, into a correct sequence on instructions for

a number of architectures.

Backtracking

In the past, it was assumed that a single cpu was expensive and that it

needed to be time-shared between users.
In the past, machines were much slower than they are today.

It was “determined” that backtracking was not practical, hence, compilers

were designed to conserve speed.

Compiler technology was invented to accommodate speed and
determinism. YACC reduced the acceptable set of languages to LALR(1), so
that it could implement parsers as NFDAs.

PEG [Bryan Ford, http://bford.info/pub/lang/peg.pdf], TXL [Cordy, hitps://
www.txl.ca/] and Prolog [Clocksin, Mellish, https:/link.springer.com/book/
10.1007/978-3-642-55481-0] show that backtracking is practical on modern
computers. A trend towards more flexible languages has not followed this

trend in faster computers.

Drawing Conventions

10

https://www.txl.ca/
https://www.txl.ca/

As it stands, we do not have an off-the-shelf drawing editor.

We use an existing diagram editor plus some conventions that make its
output suitable for compilation. We do not check all drawings for correctness
and the compiler may fail (or produce incorrect code) if drawings contain

features not specified below.

For now, we will use the (free) Draw.JO drawing editor and save the
drawings as .SVG files.

For drawings made with Draw.1O, the following conventions are used:

e A Partis drawn as a Rectangle (top-left of General palette) with Text (3
item on General palette) completely inside the Rectangle. The Text
represents the kind (aka, type, class) of the part. There can be multiple
Parts with the same kind in a drawing. These are recognised as multiple
instances of the same kind of part. Instances are given unique ID’s
internally, that are not shown on the diagram (see Figure: 1).

e A Wireis drawn as a “directional connector” (line with arrowhead) (32"¢
item on the General palette) from one rectangle to another. The
connection points are displayed by Draw.IO when the line is dragged
near, or across, the boundary of the rectangle.

e A Wire must be a single, contiguous line. It must not be split into
multiple line segments. Draw.IO allows one to place multiple “bend
points” on a line - this is allowed, as long as the line is not split into
multiple segments.

e The beginning of a wire/line is unadorned. The end of a wire is marked
with an arrow-head. Events flow from the beginning of a wire to the
end. The compiler expects the beginning of a wire to touch the rectangle.
On the other hand, arrowheads (ends of the wire(s)) can be +-20 units
from the edge of a rectangle. Draw.IO draws lines in way that the
beginning fouches a rectangle, but draws the end of a line so that they do
not touch a rectangle (only the arrowhead touches the rectangle ; it was
easier to add a kludge factor to the end of wires than to sort out which

arrowheads correspond to which lines ; the kludge factor only applies

11

to arrowhead portion of a line, all other matches are exact).

A Port is a text box (3™ item on General palette) that is not contained
inside the rectangle, but is positioned “near” one end or another of the
wire. The Port’s name is a numeral. The range of numerals depends on
the compiler. In this POC, Port names start at 0 up to 15. The compiler
measures distance from the beginning or end of a wire to unenclosed
text. The text closest to the end of a wire is taken to be the index of the
Port. Currently, ports are “named” by a numeric index. In the future, the
compiler can be changed to accept arbitrary character strings for port
“names”. This is not the case, currently (the compiler only understands
numeric indices).

A port with no arrow is an output pin. A port with an arrow-head is an

input pin.
ece
pass-js-emit.svg
File Edt View Amange Extras Help
+ o}
Dlnpul from outside o —
o
it R ettty
Genera | |
7@ Opst D()ft/' '\POM index (text) [}
o L _'v L 1]
RBect— Texi— Input port asagn_wee_fumbers_o_ouuts o
AN, o
OO v
a st B
0actd ﬂ °
DOANA
HhAds % -

SEL/ -
/ /@ Nire
Line with arrow-head o
Y

Figure: 1

Multiple wires can connect to input pins and to output pins. (“Fan out”
and “fan in”, resp.). (N.B. FBP allows “fan in” but does not allow “fan
out”. The drawings discussed here do not follow all FBP conventions

and allow for “fan out”, similar to electronic schematics).

12

[XoX) test5.svg - draw.io

test5.svg
File Edit View Arrange Extras Help

] 100 Q Q - + Joln PN

Scratchpad Grid 10pts |1

Figure: 2

Time-ordering is preserved. An event that is placed on a wire arrives at
all inputs (in the same schematic) at the same “time”. A wire that is
attached to multiple inputs (“fan out”) is, therefore, more “costly” than
a wire that connects a single output to a single input (N.B. some care is
needed when implementing multiple connection and simultaneous
delivery in a preemptive (time-sliced) environment. Fan-out requires
that the event be delivered to a group of wires/pins atomically. When
time-slicing and / or interrupts are being used, there might be a need for
some locking under-the-hood to guarantee atomic delivery of events to
implement fan-out) [The current PoC performs atomic delivery
implicitly]. Itis, also, implementation-dependant as to what happens
when non-scalar events are fanned out (e.g. an implementation can
refuse to support non-scalar fan-in, or it can implement under-the-hood
non-scalar event copying).

Inputs from the outside and outputs to the outside are drawn as ellipses

with a port number fully enclosed inside the ellipse.

13

e [Dots are currently unimplemented, since they are just “syntactic sugar”
for fan-in and fan-out at ports]. Dots, drawn as small black circles
(Draw.1O ellipses that are round, and filled with color black).

PartB PartB T
PartC PartA PartC [PartA
 J

PartD PartD

Fan In (legal but ugly) Fan In (with Dot)

PartB [_ PartB
PartA > PartC PartA ‘{ PartC
PartD ———| PartD

Fan Out (with Dot)

Fan Out (legal but ugly)

Figure: 3

Multiple wires can connect to a dot. Dots are “one-way”. A dot can
have many arrow-heads pointing into it and only one wire emanating
from it, or, one arrow-head pointing into it, and many wires emanating
from it. A dot must not have multiple inputs and multiple outputs. The
meaning of dots are (1) many inputs (arrow-heads) pointing in and one
wire pointing out means that all of the incoming wires are compressed
down into the single output (all inputs go the same place as the single
output) and (2) one input and many outputs means that the input is
split (copied) to all of the outputs simultaneously.

e Composite Parts — parts which are made up of a schematic referring to
other parts — are managed manually. A composite Part consists of a
drawing (a schematic) containing boxes, arrows, ellipses and dots.
When a composite diagram is compiled and run, it is assumed that the
children parts all exist (the compiler does not currently check for this).
Composite parts can be nested hierarchically, each part on its own

schematic.

14

e Draw.JO must be instructed to save the drawing as an .SVG file (change
the name to <name>.svg before saving).

e Hints: Draw wires first, then annotate the wires with port numbers.
When moving or re-drawing a wire, move existing port numbers far
away from the rectangle and connect the wires, then move the port
numbers back into position. Draw.JO allows wires to connect to Text,
but this is not what we want - wires must be connected to rectangles.
When a port number is left in place, while moving an reconnecting a
wire, Draw.IO might connect the wire to the rectangle or to the port

number - it remains visually unclear as to which connection is made.

The Algorithm

To describe the algorithm for compiling 2D drawings to code, I will use the
“standard” four-pass model for compiler-building from the 1D text language
paradigm. A final version of the diagram compiler might use a separation
that is different from the four-pass model, but it appears that the four-pass
model might make for a simpler explanation at this time. In fact, the current
compiler has about twenty “passes”, grouped into four larger (composite)
parts.

Draw.IO outputs drawings in various formats. bmFBP drawings use the

conventions discussed earlier and are saved as .SVG files.

In this algorithm, we always add facts to the factbase. In principle, it is
possible to remove facts from the factbase, but such action is not necessary -
downstream passes match only for the facts they are “interested in”.
Superfluous facts are skipped over and their only effect is to slow down the
pattern matching (backtracking). In the diagrams we have compiled, slow-

down is not noticeable and pruning facts is not necessary.

Scanner

15

The scanner pass simply strips and discards unused SVG information and

outputs a Prolog factbase.

Each fact appears on separate lines in the format

relation(subject,object).

Where the relation is some sort of relationship (declared in head.pl and
tail.pl), the subject is a unique id and the object is a unique id (of some other

graphic object) or a piece of data (usually an integer or floating point number).
The scanner recognises and emits four kinds of graphical objects:

1) Rectangles
2) Ellipses (with no-fill-color or black-fill-color)
3) Text

4) Directional lines (with arrow-heads).

As it stands, the POC compiler takes a component-name from the command

line and emits a fact

component('name"').

(The component name should, in the future, come from the IDE, sent in
through an ellipse input).

For every line, we know that the line has a sink port (its beginning —
where events are consumed) and a sink port (its end, where events are
emitted). “Source” means that events “come from” the port. “Sink” means
that port accepts events as input. On children parts, “sink” ports are inputs
while “source” ports are outputs. On the parent part (the drawing itself), the
input port “sources” events (from the outside) while the output ports “sink”
events (emit events to the outside). We can calculate the bounding box for
each port using a fixed constant (e.g. 20) for its size in x and y. In a later pass,

we will add more bounding box for other graphical elements. Emit a set of

16

facts (where “eltype” means “graphic element type”):

line(new-id).

source(line-id, begin-id).
eltype(begin-id, 'port').
bounding_box_left(begin-id, nnnn).
bounding_box_top(begin-id,nnnn).
bounding_box_right(begin-id,nnnn).
bounding_box_bottom(begin-id, nnnn).
sink(line-id, end-id).
eltype(end-id, 'port').
bounding_box_left(end-id, nnnn).
bounding_box_top(end-id, nnnn).
bounding_box_right(end-id, nnnn).
bounding_box_bottom(end-id, nnnn).

For every rectangle, output its ID, eltype (‘box’) and geometry x/y/width/
height.
rect(rect-id).
eltype(rect-id, 'box"').
geometry_x(rect-id,nnnn).
geometry_y(rect-id, nnnn).
)
)

(
geometry_w(rect-id,nnnn).
geometry_h(rect-id,nnnn).

1For every text graphical item that contains only numerical digits, emit it’s
id, the “text” as a number and its geometry.
text(text-id, nnnn).
geometry_x(text-id,nnnn).
geometry_y(text-id,nnnn).
)
)

(
geometry_w(text-id,nnnn).
geometry_h(text-id,nnnn).

For every text graphical item that contains any non-numerical characters,
emit it’s id, the “text” as a string and its geometry. (Currently, the compiler
uses strings for part kinds and numbers for port indices. When creating the
initial factbase, it is “easy” to differentiate between strings and numbers.
Prolog can easily differentiate between these two types using the hint that
strings are quoted and numbers are not. This differentiation helps
downstream passes, by making it obvious what the text contains, since the
downstream passes do not need to perform differentiation, since it is already

done).

17

text(text-id, 'string').

geometry_x(text-id,nnnn).
geometry_y(text-id,nnnn).
geometry_w(text-id,nnnn).
geometry_h(text-id,nnnn).

For every arrow-head, emit it’s id and an (x,y) pair that corresponds to the

“tip” of the arrow-head.
arrow(arrow-id) .
arrow_x(arrow-id, nnnn).
arrow_y(arrow-id, nnnn).

(As can be seen, the scanner is relatively “simple” and does little work.
The last two passes inside the scanner - plsort and check_input - do almost
“nothing”. Plsort simply sorts the factbase, since Prolog requires that all rules
with the same name be contiguous, and “check_input” does an incoming
sanity check to check that the factbase is clean. In this case, we simply rely on
Prolog to signal bad rules. “check_input” simply reads then writes out the
factbase. If prolog signals no errors then the sanity check is deemed to have
succeeded. In the future, check_input might be extended to check more
details.)

Parser

In this POC, “parser” does most of the work, consisting of 9 passes (each

one fairly simple):

1) Calculate bounding boxes for Rects and Text, insert the bounding box
facts for each item into the factbase. This pass adds four kinds of facts to
the factbase: bounding_box_left, bounding_box_top, bounding_box_right and
bounding_box_bottom, each with an ID and a number. [calc_bounds].

2) For every rectangle, find a graphical text item that fits inside the box (its
kind (aka type or class)). For every such text item, mark it as
“used” (simplifies searching in later passes). The “kind” is marked with
a kind(id, text-id) fact and a used(id) fact. [add_kinds].

3) For all text items that are not marked as used, create an unassigned fact.
This is a superfluous operation, but makes downstream passes “easier”

- unassigned means that the item is fext and that it is not marked as being

18

4)

5)

6)

7)

8)

9)

used (i.e. used as a kind name of a rectangle).
[make_unknown_port_names].

Create a center (x,y) for every port and every unassigned text item.
[create_centers].

For every port, calculate the distance to every unassigned (text) item. We
stay true to the idea of making every fact a triple (and only a triple).
This requires the use of an indirect fact called join which joins a port to
each calculated distance for each unassigned. In “normal” Prolog, we
could simply list the PortID, the TextID and the Distance in a single fact
(instead of using indirection via join). [calculate_distances].

For every Port, make a list of distances to unassigned text. Choose the
minimum distance in the list, then create a pair of facts that connect the
PortID to the TextID (portIndex) and another fact that points
“backwards” from the TextID to the PortID (portIndexByID). [For the
sake of future revisions, also create another pair of facts using string
name (portName, portNameByID) - not strictly needed by this
algorithm.]. [assign_portnames].

Mark every port as a sink or a source, as appropriate.
[markIndexedPorts].

To allow fan-out and fan-in, ports can overlap one another (see figure
1.3). For every group of overlapping ports, only one port actually has
an index assigned to it. Propagate the index to all other overlapping
ports. [coincidentPorts].

For every port, calculate which Part (a rectangle ‘box’) the port
intersects with and insert a new parent fact relating the port to its parent.
[match_ports_to_components]. Clearly, the semantic pass should check

that each port intersects one and only one Part.

At this point, the algorithm is almost finished - a diagram, following

conventions as described earlier, has been entered into the factbase and the

factbase contains sufficient information to produce code. As can be seen, the

algorithm is very simple. A production version of this algorithm would

include more semantic checks.

Semantic Pass

19

The semantics pass checks various design rules. If any check doesn’t pass,

it should abort code generation. At present, there are only two passes built as

examples of semantic checking - sem_partsHaveSomePorts (every Part must

have at least one port) and sem_allPortsHaveAnIndex (every port must have a

numeric index (this index is used during code generation)). The semantic

pass could (should) have many more checks, but as can be seen, using

backtracking pattern matching over the factbase makes piece-wise semantic

checking “easy”. In fact, the semantic checks could be spread throughout the

compiler and abort compilation at its earliest convenience.

Code Emitter

The code emitter walks the factbase and creates a file of text for a given

language. In this case, a JSON table is emitted for JavaScript. There are

currently 5 steps to doing this:

1)

2)

3)

Create a “wire number” for every wire. Since every wire is connected
to one source and one sink, as per the diagram conventions, we
arbitrarily walk the sinks and assign wire numbers. For every sink port,
match the wire(s) that it is connected to, and assign a wire number,
starting with 0 and increasing by 1 monotonically. Keep a count of the
number of wires on a given diagram.
[assign_wire_numbers_to_inputs].

For every source port, match the wire(s) that connect to it, then
associate the wire number with the wire(s). Use the already-chosen
wire number from step one, from the sink attached to a given wire.
For every sink Port on every Part, create two facts - the inputPin and
wirelndex facts. Do the same for every source Port on every Part

(outputPin and wirelndex). [inOutPins].

The algorithm for handling ports is a subset of the main
algorithm. Port handling is described below.

20

Scanning

During scanning, we know that each line has a port at its
beginning and a port at each end. We don’t yet know what the
port is attached to or if it is an N/C (no connection.

During scanning, we attach a port to each end of the line,
and, since all lines are arrows, we can also assign a
“direction” (source (output) or sink (input)) during this
pass. For example, each line has the following facts entered
into the factbase: an new id for the line, a source port
(output port), a bounding box for the port based on (x1,yl) of
the line and a sink port (input port).

The bounding boxes for the ports are “invented” at scan time.
These “invented” ports are made to be 40 pixels on all sides.

The facts appear in the factbase as:
line(new-id).

% port at line beginning

source(line-id, begin-id).
eltype(begin-id, 'port').
bounding_box_left(begin-id, (x1 - 20)).
bounding_box_top(begin-id, (y1 - 20)).
bounding_box_right(begin-id, (x1 + 20)).
bounding_box_bottom(begin-id, (y1 + 20)).

% port at line end

sink(line-id, end-id).

eltype(end-id, 'port').
bounding_box_left(end-id, (x2 - 20)).
bounding_box_top(end-id, (y2 - 20)).
bounding_box_right(end-id, (x2 + 20)).
bounding_box_bottom(end-id, (y2 + 20)).

Parsing

In “make_unknown_port_names”, we find all pieces of text that have not
yet been associated with any Parts (rectangles). This includes all text that
consist only of digits (i.e. port indices). Each of these pieces of text are given

an “unassigned(TextID)” fact.

In “create_centers” we assign “center_x(ID,N)” and “center_y(ID,N)” facts

to all unassigned pieces of text and all ports (eltype(ID,port)).

21

In “calculate_distances” we create a distance vector from every port to
every unassigned piece of text (this is inefficient but works in the POC. Maybe
there is a better way). In this particular case, I decided to create a new Object
called a Join with a unique ID. A unique “join_centerPair” is created for every
Port. Each join_centerPair has two facts created for it -
“join_distance(Join_centerPairID, TextID)” and
“distance_xy(Join_centerPairID,Distance)”. The former connects the Port to
one unassigned piece of text and the latter gives the distance between the Port
and the one unassigned piece of text. Again, there might be more efficient

ways to express this connection.

v
{ distance_xy(JoinID,NNNN).
eltype(Pid,’port’). join_centerPair(Pid,JoinID) unassigned(TextID)

[J join_Distance(JoinID,TextID) %
Jt text(TextlD,'abc")

Figure: 4

In “assign_portnames” (finally), for each port, we find the unassigned
piece of text that is closest to the given port and associate the port and the text
via a portIndex fact. Furthermore, we associate the text with a back-pointer
fact “portiIndexByID”. Historically, we create two more facts that mirror this
two-way association with “portName” and “portNameByID” for pieces of
text that are not numeric. Historically, we started out with textual port names.
Later, we discovered that every port needs an index (for the coder pass) and
made a new convention that insists that every port must have an index and
that only some ports may have names. We currently ignore textual port
names. In the future, I may return to using textual names for ports while

automatically creating numeric indices for ports.
In the two-Part pipeline, “markIndexedPorts” and “coincidentPorts”, I
implement fan-out and fan-in. I find all ports that overlap each other and

assign the same index to all of those Ports.

The Part “mark_directions” is a no-op for this POC compiler. In some

22

editors, the direction of lines is not specified. In such cases, lines might be
made up of segments with no direction associated with them. In such cases,
the compiler needs to trace all connected segments to find the ultimate
beginnings (sources) and ends (sinks) of the lines and create a virtual directed
line between the beginning and end Ports. In this POC, we use Draw.1O, and
use the convention that all lines (wires) use Draw.IO’s arrows. Draw.JO
arrows already provide direction information, so “mark_directions” is a no-op

in this case.

The Drawing Compiler

This section documents the actual facts and passes used by the current POC
(proof of concept) compiler.
These choices might not be the best ones, since understanding of the

architecture grew over time, but they do represent the contents of the current
POC.

Basic Concepts
The basic requirements for compiling a diagram are:

e To “arbitrarily” choose a set of graphical “atoms” which can be used to
draw the diagrams for the language.

e Then, use pattern matching and backtracking to infer new, semantic
information which builds a knowledge base (some kind of data
structure) that represents the interesting details within the diagram.

e Finally, convert the inferred information into some other text language,
which is then compiled into executable code in the usual way, using

existing compilers and tools.
At first, this may seem difficult or impossible. One can use the method of

“divide and conquer” to create ridiculously small components, to produce a

working diagram compiler.

23

I have concluded that no single programming language can do everything
that is required, to solve an actual real-world problem. Several “design

principles” come from this conclusion:

e Use a paradigm and a language that is most suited to the task(s) at
hand.

e Don’t over-design. Create only what is needed to solve the problem.
Abstraction and generalisation are over-sold. If done too early (e.g.
before some 3 iterations on the solution), abstraction is a bad idea that
wastes time and usually doesn’t solve the problem at hand. A corollary
is: code reuse is a bad idea, design (architecture) reuse is a better goal -
code is (can be) cheap, thinking is hard. Reuse “thinking”. Refactoring
is a symptom of poorly-expressed design. If you feel a need to refactor
code (instead of just throwing it away), then you are probably doing
something else wrong.

e Don’t build the Design into the program - encapsulate the Design and
pull it out of the code. Spaghetti Design is worse than spaghetti code.

e Don't generalise, just get the job done. Code libraries bring other
problems into the mix, which detract from getting the job done, as
we’ve seen over the decades. Making it possible to reuse the Design (the
thinking time, e.g. patterns) results in better use of human resources

than taking the time to abstract code and to make it a part of a library.

The above principles have led to an extremely simple diagram language, as

discussed below.

Graphical Atoms

In this diagrammatic language, we simply need about two (2) graphical

objects - straight lines and text. This diagrammatic language consists of

e boxes and

b arrows.

24

I will show that a language as simple as this, can result in useful expression
of software concepts that cannot be done with text alone (esp. when the boxes

represent asynchronous actions, not synchronous ones).

The next step up is to infer rectangular boxes. Rectangular boxes can be
inferred from a diagram by pattern matching straight lines and discovering

lines that have common (x,y) end points.

Many drawing tools provide rectangular boxes, so we can simply add
them to the list above. In this POC (proof of concept), we are using Draw.1O.
Draw.IO provides rectangles as atomic graphical objects, hence, we can avoid

inferencing rectangles. We extend the above list to three (3) items -

e straight lines,
e text, and

* rectangular boxes.

Draw.IO also provides straight lines with arrow-heads as primitive graphic
atoms. We will need to know the “direction” that lines point in, hence, we

extend the the above list to four (4) items:

e straight lines,
* text,
* rectangular boxes, and

e arrow-heads.

Another diagrammatic language, say one for expressing StateCharts, might
use another completely different set of graphical primitives (e.g. curved lines,
text, ellipses, dotted ellipses, callouts), but, using the “do not over design”
principle, above, we will ignore these other atoms for now. Building a

compiler for StateCharts is another project (and, it has been done in the past).

FactBases

25

The “ideal” data structure for the compiler is one that implies no structure
(!) to the data.! One such data structure is the factbase .

A factbase is an unordered collection of facts.> A fact is a simple 3-tuple that

contains a Subject, an Object and a Relation between them.

In Lisp, a fact might be represented as

(relation subject object)

In Prolog, a fact might be represented as

relation(subject, object).

To keep things ridiculously simple, we can implement a factbase as a file,
with one fact per line and with empty lines being ignored. We append new
facts to the front or to the end of the file (whichever is easiest - we don't

actually care, since the factbase is unordered).

In this example, the most basic factbase would contain only the four
graphical atoms plus geometry facts that describe their X and Y positions on
the diagram plus width and height information (if appropriate). For example,

a simple factbase might be:

text(id1,’").
text_string(idl, 'hello’).
text_x(id1,100).
text_y(id1,200).

' The advantage to using a structure-less data structure is that one can apply no
pre-conceptions to the data. This leaves the software Architecture open for future
consideration. An example | like to use is to create a completely different use for the
unordered factbase, e.g. what if | want to create a Gantt Chart from the data? If the
data has a pre-determined structure, then it might not suit a Gantt Chart app. This
approach wastes cpu in lieu of data design, but save human-time (we have lots of
cpu time to burn, using the latest hardware).

2 A factbase is very similar to a triplestore in Web3.

3 In fact, can a Prolog be twisted inside-out to suggest what structure the
factbase should have to make future searches faster???

26

Here, ‘id1’ is some unique ID for the text. The first line “declares” the
existence of a piece of text on the diagram. The rest of the lines all refer to the
same ID (id1) and specify properties of the text e.g. the actual string of
characters of the text, the (x,y) coordinates of the text.

Facts are very similar to N-tuples found in the semantic web, etc. A factbase
is very similar to triple-stores. Triple-stores and n-tuples are more general than

what is needed for a diagram compiler, so they will be ignored for now.

Pattern Matching & Backtracking

One operation that will be used repeatedly is pattern matching for inferring
new information within the factbase.

Prolog is a language that expresses both of these operations conveniently,
and Prolog is freely available.

I use gprolog in this project.

I assume that mini-Kanren (micro-Kanren) could be used (but, I haven’t
explicitly tried that idea yet ; micro-Karen is available in Scheme, Clojure and
Haskell, among other languages, and its use is detailed in the book “The

Reasoned Schemer”).

As an example of what we might use Pattern Matching & Backtracking for
is to infer that a rectangle is formed out of four lines (not that, if we use

Draw.IO, we won't actually need to do this):

line(id2,’'’").
line_x1(id2,10).
line_y1(id2,10).
line_x2(id2,20).
line_y2(id2,10).
line(id3,’'’").

line_x1(id3,20).
line_y1(id3,10).
line_x2(id3,20).
line_y2(id3,20).
line(id4,"'"’).

line_x1(id4,20).
line_y1(id4,20).
line_x2(id4,10).
line_y2(id4,20).

27

line(id5,"'").
line_x1(id5,10).
line_y1(id5,20
line_x2(id5,10
line_y2(id5,10).

~— N '
- L]

The above factbase describes one rectangle as a set of four lines (id2, id3,
id4, id5). [X’s increase to the right, Y’s increase downwards, in this coordinate

system].

Pattern matching can be used to infer the rectangle by checking the
endpoints, for example, the end-point of id2 matches the beginning-point of

id3 and so on, all the way around.

When we find such a closed rectangle, we insert a new set of facts into the

factbase, for example:

rectangle(id6,’’).
rectangle_center_x(id6,15).
rectangle_center_y(id6,15).
rectangle_width(id6,10).
rectangle_height(id6,10).

It is simple-enough to write rules in Prolog, that pattern-match and

backtrack to find all such rectangles in the factbase.*

In earlier days of computing, it was considered impractical to use

* We might need to delete the line facts, or mark them “used”, depending
on the design of the compiler and the drawing conventions and whether the
line facts interfere with further pattern matching in downstream passes. In this
particular case (PoC), we don’t need to pattern match lines to make rectangles,
since Draw.IO already provides rectangles.

In this POC, we simply invent new names for facts, such that old facts do
not overlap with new facts, and old facts never need to be deleted.

For example, rectangle fact carries more semantic information that any line

facts. Once we create a rectangle fact, we simply ignore all line facts in future
(downstream) passes.

28

backtracking in this way. Numerous methods were developed to pattern
match streams of characters (e.g. Lex to match strings of characters using state
machines, Yacc to match strings of tokens using state machines). These
methods tended to restrict the kinds of sequences (languages) that could be
recognised (e.g. Yacc could pattern match LALR(1) grammars and would raise

errors if the incoming language did not conform to LALR(1)).

Modern computers (2010 +) and Prolog engines make backtracking

practical and quick.

Using successive pattern matches, it is possible to infer a great deal of
information about diagrams and to use this information to produce code from

a diagram.®

As an example, one version of this notation denoted Ports as small squares
positioned on the edge of larger Parts. The inference was done using small
steps - (1) pattern match ALL rectangles (and squares) (2) find all squares (3)
find all squares that intersect the edges of bigger rectangles, and declare (by
adding facts to the factbase) that the small squares are Ports and which
rectangular Parts they belong to, e.g.

port(id31,’’).
parent(id31,id77).

part(id77,’’).

Intersection
Most of the work in building a diagram compiler in this way is no more

difficult than calculating whether lines intersect.

Pipelines
In the "70’s and "80’s, the use of pipelines (shell “|”) was explored for

5 N.B. This method of backtracking parsing has not been fully explored (but, see
http://bford.info/packrat/), hence, creating useful error messages has not been
explored fully.

29

http://bford.info/packrat/

applying “divide and conquer” strategy to solving problems, but, for some
reason, the pipeline work has not been carried over into software language

design (beyond Bash, etc).

Small Components
TBD
Rules of thumb:

e The smaller the better.

e Remain practical - reasonable speed on current hardware.

¢ Continue Dividing and Conquering until any professional can
understand the purpose of the component and can implement the

details in a few hours.

Prolog, Relational Programming
TBD

Garbage collection
TBD

Efficiency
TBD
O/S threads vs mutual dispatch.

Concurrency
TBD
Cooperative Dispatching

Agile Methods
TBD
- Agile attempts to solve the Specification problem, but does it in a non-

rigorous manner (e.g. results, diagrams, comments, cannot be compiled).

Scanner

The purpose of this (Composite) Part, the “Scanner”, is to create a Prolog

30

factbase from a .SVG file drawn in Draw.IO using the drawing conventions

described earlier.

Facts are written as Prolog 3-tuples, eg. “relation(id1,id2).” or
“relation(id1,data).” These facts correspond to triplestore databases (e.g.
semantic web). The full capabilities of Prolog are not used e.g. no functors,
and all facts consist of one relation, one subject and one object, e.g.
“relation(subject, object).”. The design hope is that other technologies (e.g.
mini-Karen) could be used for inferencing and that the design of factbases not

be tied to Prolog.
The Parts within this compound Part are:

 hs-vsh-drawio-to-fb testl <test5.svg >...
[Lisp output: Container, Translate, Path, Rect, Text, AbsM,
AbsL, relM, Relll

This Part (phase) is written in Haskell.

It takes a .SVG file, removes the unneeded portions (most of it) and
produces a file of Lisp tree (SEXPRs, aka Container) representing the most
basic graphic operations needed by the rest of the compiler.

The basic graphic operations are:

o rectangles
o ellipses
o line and arrow paths

° text.

e lib insert part name svgc
[Lisp output: (component <name>)]

This Part is used by the bootstrap compiler. It takes a “name” from the

command line and produces one line of Lisp containing the name.

31

This line is prepended to the output from above (hs-vsh-drawio-to-fb).
e fb-to-prolog

Output facts include:

component('name').

line(new-id).

edge(edge-id).

node(begin-id).

source(edge-id, begin-id).
eltype(begin-id, 'port').
bounding_box_left(begin-id, nnnn).
bounding_box_top(begin-id, nnnn).
bounding_box_right(begin-id, nnnn).
bounding_box_bottom(begin-id, nnnn).
node(end-id).

source(edge-id, end-id).
eltype(end-id, 'port').
bounding_box_left/top/right/bottom(end-id, nnnn).

rect(rect-id,'"').
eltype(rect-id, 'box"').
node(rect-id).
geometry_x(rect-id,nnnn).
geometry_y(rect-id,nnnn).
geometry_w(rect-id,nnnn).
geometry_h(rect-id,nnnn).

text(text-id,nnnn). or text(text-id, 'string').
geometry_x/y/w/h(text-id,nnnn).

arrow(arrow-id,"'").
arrow_x(arrow-id, nnnn).
arrow_y(arrow-id, nnnn).

This Part is the main work-horse of the Scanner. It takes the output of
“lib_insert_part_name” as a Lisp tree and converts it to Prolog. It takes input

on stdin and outputs the Prolog fact base on stdout.

It creates unique id’s for each main fact and outputs relations between the
facts by referring to the id’s. For example, a rect is declared by the “rect(id,”).”
fact. The coordinates of the rect are given by four geometry facts, referring to
the particular rect’s id. The centre of the rect is specified by two facts -
geometry_x and geometry_y. The width and height of the rect are specified by

32

two more facts - geometry_w and geometry_h, resp.

The node fact is obsolete - it is used to declare the presence of a new id for

some kind of graphical object.

If a text fact contains its text in single-quotes [‘]. If the text consists of only
digits 0-9, it has no quotes. Further down the pipeline, Prolog differentiates
numeric text facts from strings by the non-presence or presence of quotes, resp.
(See 2.1). This differentiation is used by the bootstrap compiler to ensure that
every port has a numeric index. Only some ports have string names, but all

ports have indices.

Each line is described by a path, a beginning coord and an end coordinate.
All intermediate points on a line (the bends drawn in Draw.IO) are discarded.
The compiler needs only to know where the line begins and ends. Draw.IO
does some of the work for us by making all lines fully contiguous, even if the
line contains intermediate points. In other drawing editors, it might be
necessary to draw a bent line using line segments. In this case,’® a pass needs
to be added to the compiler to infer which segments touch one another and to

infer a contiguous line, its beginning and end points.

Arrows are specified by an (x,y) coordinate that corresponds to the tip of
the arrow. The tip coordinates must be near the end of a line (path). The
arrow tip is recognised as the end of the line. The arrows give direction to lines
and show which way the events flow. In other versions of the compiler, one
might choose to discard arrows and supply only output and input pins.
Compiler passes would be added to infer the direction of the lines (e.g. output

pins imply beginnings of lines and input pins imply endings of lines).

All lines are assigned begin and end ports and these port facts are emitted to
stdout

e plsort

6 But, not for this POC.

33

This Part is a no-op. It performs a *nix sort on the factbase. Prolog requires
that all facts of the same kind be grouped together. All incoming facts on stdin
are sorted then output on stdout. The factbase is not changed, just re-

arranged.
This Part is implemented as a *nix shell script using the sort(1) command.
e check input

This Part is a place-holder that might be implemented in a non-POC /
bootstrap version of the compiler. Its purpose is to sanity-check the incoming
(stdin) factbase. In the bootstrap, this Part does almost nothing - it loads the
factbase into Prolog, then spits it back out (stdout). If there are any problems on

input, Prolog will throw an error.

Parser

This Part - the Parser (a Composite Part) does most of the work for the

compiler.

This Part accepts the fairly simple factbase and infers a great deal of
information about the drawing. No sanity checking is performed in the Parser

pass (checking is the domain of the following pipeline part “Semantic
Check”).

This Part emits (to stdout) an updated factbase containing “more
interesting” details about the drawing. In the POC / bootstrap, we do not
elide any facts, all facts are kept in the factbase - the bootstrap was a growing

“experiment” to see which facts were needed by the Coder phase.

The Parser, in its current state, uses 10 Parts to complete the inferencing.

Each child Part is fairly simple. We used Prolog to implement the Parts, since

34

backtracking search for inferencing was required. We could have used other
inferencing / relational techniques, such as mini-Karen or deeply nested

loops.”

Each Prolog child Part begins by reading the factbase (from stdin) (files:
“head.pl” and rule “readFB”). It then performs inferencing per its main rule.
Finally it writes out the augmented factbase using rule “writeFB” (see file
“tail.pl”) and calls “halt.”.

Most of the passes do not need explanation. In such cases, only the new
facts added to the factbase by the pass are listed.

e calc bounds
bounding_box_left(<id>,nnnn).
bounding_box_top(<id>,nnnn).
bounding_box_right(<id>,nnnn).
bounding_box_bottom(<id>,nnnn).

. add_kinds
used(text—-id).
kind(box-id, Str).

. make-unknown port names
unassigned(text-id).

o create centers
center_x(unassigned-text-id).
center_y(unassigned-text-id).

e calculate distance
join_distance(join-pair-id, text-id).
distance_xy(join-pair-id, nnnn).
join_centerPair(port-id, centerPair-id).

® assign portnames
portNameByID(port-id, text-id).
portName(port-id,string).
portIndexByID(port-id, num-id).

7 Searching the factbase for patterns can be done in any language. Pattern
matching happened to be very easy in Prolog.

35

portIndex(port-id, num-id).

e markIndexedPorts
indexedSink(port-id).
indexedSource(port-id).

e coincidentPorts
portIndex(unindexed-port, index).

e mark directions
nothing - yEd and draw.io produce edges with direction

o match ports to components
parent(port-id, parent-id).
n_c(port-id).

Semantic Pass

The Semantic Pass should check as many design constraints as possible,
e.g. types, and prevent the coder from producing code, if any design
constraints are violated. In this POC, the semantic pass exists only as an

exemplar and does any real amount of design-rules checking.

Once the factbase is emitted by the Semantic Pass, the factbase is “certified
correct”, meaning that the original program is a correct program and meets all

requirements posed by the language (a diagrammatic language, in this case).

This POC / bootstrap contains very few semantic checks, for clarity and

for development time.

The two semantic checks, below, show how simple and self-contained each
check can be. The checks should all have an “error” output (but don’t, due to
the bootstrapping nature of this example POC compiler). The error outputs
might all be bussed together on a single error line that is an output of the
semantic pass Composite Part. If anything is output to the error output, the

coder should ignore the incoming factbase and refuse to produce output code.

36

. sem_partsHaveSomePort

This Part checks that there is at least one port on every Part, in the system

being compiled. A Part with no pins does not make sense and is illegal.®
J sem_allPortsHaveAnIndex

This Part checks the underlying assumption that all Ports (on Parts) have a
numeric index. As the POC compiler stands at the moment, there is an
underlying assumption that an index has been created for each Port. If there
are any Ports without an index, the prolog code might miss them and the
factbase might describe an illegal program.

Many other design constraint checks can be performed, but aren’t in this

bootstrap POC compiler. For example, all wires must terminate on Ports, etc.

Code Emitter

The Coder (aka Code Emitter) produces code from the diagram, for
various languages. In this particular POC, we produce code for JavaScript
(JS). In this particular POC, the JS code we produce is a JSON wiring table.
(We join the JSON with leaf parts (JS) and a kernel in a later “build” pass).

A Coder might also contain an optimiser, but this POC does not contain an

optimiser.

In this POC, the code consists of seven child Parts. The first four Parts are
written in Prolog and deal mostly with creating a “wire” array (called “pipes”
for historical reasons), creating unique indices for the wires and describing

which wire indices refer to which Pins.

8 Note to self: Is it legal to have a pinless component at the Top Level???

37

The fifth pass is just another *nix sort for Prolog requirements (probably

unneeded, as it was experimemtal).9

The sixth Part, “emit-js” uses Prolog to walk the factbase and to emit

intermediate code that can be read by Lisp.

The final Part, “emit-js2” is written in Lisp and simply transforms the
intermediate code from “emit-js” as a legal JSON table in JS. Note that the
character “@” is a legal identifier character in Lisp. The meat of this Part is in
main() and describes its architecture as calls to zero-argument functions. Each
of the functions are prefixed with the character “@“ to mean that they are
“mechanisms” (in the S/SL!? sense). These “@” functions “support” the
architectural intent written out in main(). Lisp was chosen for this Part, due to
its rich output formatting, due to its ability to read() the intermediate code
and familiarity to the author. Any other language could have been used, and
the preceding Part (“emit-js”) could have been tweaked to make the work

easier in the other language.

. assign_wire_numbers_to_inputs
nwires(nnnn).
wireNum(pin-id, nnnn).

This pass creates a unique index (a number, incrementing monotonically
starting at 0) for each wire in the diagram being compiled. This pass creates a
fact indicating the maximum number of wires and a fact for each wire
associated with every input pin. An input pin might have 0 or more wires

connected to it.

° assign_wire_numbers_to_outputs
wireNum(pin-id,nnnn).

This pass associates one or more wire numbers with each output pin on the

diagram.

9
10 https://dl.acm.org/citation.cfm?id=357164

38

https://dl.acm.org/citation.cfm?id=357164
https://dl.acm.org/citation.cfm?id=357164

e assign_portIndices
sourcePortIndex(pin-id, nnnn).
sinkPortIndex(pin-id,nnnn).

This pass visits every pin (input and output) and creates a fact associating
an index (a number) with it. It also marks whether the pin is a source or a
sink. This pass simply collapses information that is already in the factbase,

making traversal easier in downstream passes.

. inOutPins
inputPin(part-id, pin-id).
outputPin(part-id, pin-id).
wireIndex(pin-id,wire-index).
n_c(pin-id).

This pass marks every pin, associated with Part, as being an input or an
output pin of that Part. It also gathers the wire index and creates a wireIndex
fact. Pins that have no wires attached to them are marked as “No

Connection” (n_c).
e plsort

This is the same as the previous plsort. It simply uses *nix sort() to sort the
factbase and to group like-named rules together according to Prolog’s
requirements. This pass might now be a no-op in the finished POC. We need

to test whether this Part can be removed from the pipeline.!!
d emit-js

This Part is one-half of the final output functionality. It gathers the
information, from the factbase, to write out the JSON table. Prolog is used for
this Pass, since Prolog makes it “simple” to pattern-match, using
backtracking, for the required information. The author deemed it “easier” to
format the output using Lisp instead of Prolog, hence emission is cut into two

Parts. This Part outputs a lisp data structure, not a factbase.

" At time of writing - this plsort part might have been removed from the POC.

39

* emitys2

This Part finalises the output, using Lisp code to read the the output from
“emit-js” and uses Lisp’s “format” function to produce an indented JSON
table. This table is meant to be coupled (TBD) with the JS kernel code and any
JS methods that are used by the parent Part.

40

