
1

New-Breed HLLs
The way forward is: assume that ALL current programming languages are

assemblers, and create new-breed HLLs that emit such assemblers.

Concurrency
Concurrency is a programming paradigm.

See Rob Pike's talk "Concurrency is not Paralellism" https://vimeo.com/
49718712.

Parallelism is a specific problem. Parallelism and Concurrency are often
conflated together.

Every parallel program employs the concurrent paradigm.

Not every concurrent program is parallel.

Concurrency is a programming paradigm that is useful on its own, like
Structured Programming, OO, FP, etc., etc., etc.

Isolation
I invent the word "isolation" to mean uber-encapsulation.

Isolation encapsulates everything that encapsulation does, but, also
encapsulates control-flow, whereas encapsulation does not.

Isolation exists in operating systems such as UNIX, but does not appear in

https://vimeo.com/49718712
https://vimeo.com/49718712

2

commonly-available programming languages.

DaS
I invent the word "DaS" to mean Diagrams as Syntax.

It is possible to parse diagrams in the same way as we now parse textual
languages.

The key ideas that I use are:
• Use backtracking (e.g. PROLOG) to do the parsing - we can optimize this

later.
• Think of diagrams as glyphs, not pixels. For example, a box-and-arrow

language contains only the glyphs:
⁃ boxes
⁃ arrows
⁃ text

• Allow glyphs to overlap, instead of insisting that they be arranged on a
fixed, non-overlapping grid as is done with current programming editors.

• Mix text in with the diagrams.
• Some things are better expressed as text, e.g. a = b + c.
• Do not create diagrams to express things that we already know how to

express.
• Use diagrams to express ideas that cannot be easily expressed1 in text, e.g.

composition of concurrent components, e.g. components that have
multiple results, e.g. components that accept inputs at varying intervals of
time, e.g. components that produce outputs at varying intervals of time.

• Use the Concurrent paradigm. DaS - e.g. box-and-arrow diagrams - tend
not to work unless the boxes are concurrent. [Attempts at shoe-horning
box-and-arrow diagrams into the sequential/synchronous paradigm cause
difficulties and accidental complexities.]

1 and understood

3

What Makes a Good Assembler?
 "Good" assembler languages are ones that are easy to emit.

"Good" assembler languages are not the same as "good" programming
languages.

Good assembler languges are "loosey goosey".

Good assembler languages do not require declaration-before-use.

Good assembler languages do not have strong-typing. Strong-typing is
provided by the HLL, not the assembler. Strong-typing is for people, but
assembler languages are for automation.

Good assembler languages provide 1st class functions.

Good assembler languages provide anonymous functions.

Examples of good assembler languages: Lisp, JavaScript.

Riffing
New-breed HLLs will riff on these ideas: concurrency, isolation, DaS.

Projectional Editors
Projectional editors edit assembler language.

4

A good place to start is with a "good" assembler language (see "What Makes a
Good Assembler?").

SCLs
I invent the word "SCL" to mean Solution-Centric Language.

SCLs are a sub-class of DSLs2, but are tuned to the details of a solution to one
specific problem. In other words, what Engineers do3.

PEGs
I believe the PEG4 technology is a break-through technology that makes SCLs

possible and allows them to be used liberally.

Ohm-JS
I am exploring Ohm-JS5. I have written about it and will continue to write

about it.

2 Domain Specific Languages
3 Engineers solve one "real" problem at a time, using the best available

technologies.
4 https://bford.info/pub/lang/peg/
5 https://github.com/harc/ohm

	New-Breed HLLs
	Concurrency
	Isolation
	DaS
	What Makes a Good Assembler?
	Riffing
	Projectional Editors
	SCLs
	PEGs
	Ohm-JS

