
JavaScript Concurrency
JavaScript supports closures.

Closures form the basis for concurrency1.

In a concurrent design, all routines are closures, except one distinguished routine – the dispatcher – 
that invokes closures “at random”.

Closures communicate with each other solely through message queues.  Yes, I am describing a message
passing architecture.  We have the prejudice that message passing fails  This prejudice is based on the 
idea that message-passing is used to build a flat system.  The way to tame message passing is the same 
way that GOTOs were tamed – through the use of structured encapsulation2 and hierarchy.

Flat-anything is bad.  Flat-anything results in spaghetti.  Global variables were bad because they were 
“flat”.  Local variable scoping solved that problem.  A flat type-system is bad (have we recognized this 
fact yet?).  A flat function space is bad (we’ve been playing whack-a-mole with packaging, packaging 
systems, imports, exports, etc., trying to fix this problem).  Flat data is bad.  We fixed this problem with
OO.

That’s it – to implement concurrency in JS, you need closures, message queues and a dispatcher.  A 
good dollop of hierarchical organization will help.

(See my essay on isolation.  See my essay on simple systems).

1 Note that concurrency and parallelism are not the same things.  See Rob Pike’s talk “Concurrency is not Parallelism”.  
Concurrency is a programming paradigm.  Parallelism is a solution that requires the use of the concurrent paradigm.  
Parallelism requires concurrency, but not the reverse – concurrency does not imply parallelism.

2 Nesting, scoping, etc.


