
1

Introduction
This is my first experiment with blogging about computing.

I have been writing for about one year and am posting many topics at once in
no particular order.

I suggest that you examine the list of topics first, and choose articles that
interest you.

I try to write in a personal style.

I use hyperbole and controversy liberally as a way to underline ideas. Don't
believe everything I say, without further introspection.

My intention is to report on what I see and, with hope, get the reader to stop
and to think about the various topics I discuss.

I try to simplify. I leave out details. Details kill.

First comes breadth of understanding, then comes depth of understanding.
Details can be filled in later. I believe that the details are important, but need not
be addressed in the first pass through. Divide & conquer also applies to writing,
reading, understanding.

Main Points
1. Multitasking is easy, if you remove time-sharing and memory-sharing.
2. Sequencing of programs is part of design.
3. DI (Design Intent) is important.
4. The word "Architecture" is diluted and has many meanings.
5. Concurrency is not Parallelism.

2

6. Diagrams should be considered part of PL1 syntax. I call this DaS.2

7. Flat <anything> will not scale.3

8. Text-only thinking has caused accidental complexity in the design of PLs,
e.g. exceptions are not exceptional, parameter lists are only one way to
transfer data to a routine, return values are only one way to transfer result
data to the caller, etc.

9. Loop is the exception, not the rule (this includes recursion). Loop syntax
limits our thinking about distributed system designs.

10. Concerns for memory sharing, time-sharing, etc., have caused accidental
complexity. Newer computing hardware is no longer limited by concerns
for memory recycling and processing power. PL design has not kept up
with such advances in computer abilities.

11. I believe that multiple paradigms should be used in practice when solving
real problems.

12. I highly endorse the use of multiple DSLs to solve real problems.
13. Engineering is not coding. Coding is not Engineering.
14. Certain languages have a plethora of features. We should treat these

languages as assembly languages and build new-breed "HLLs" with them.
15. The Divide and Conquer paradigm is under-used.
16. Simplicity is hard.4

17. Systems built on a single paradigm are bound to fail.5

Comments Section
I haven't settled on a way to allow comments in my blog.

1 Programming Language
2 Diagrams as Syntax.
3 That includes GOTOs, global variables, global types, global functions, global

namespaces, etc.
4 Corollary: complicated solutions are a cop-out. Complicated solutions should not be

rewarded through acceptance and use. TC;DU - too complicated, didn't use.
5 N.B. FP (Functional Programming) is a paradigm. A single paradigm.

3

TC;DU - too many options.

I need shuhari regarding blog comments.

For the time being, send email to ptcomputingsimplicity@gmail.com.

Maybe I will duplicate some comments in my posts, or, maybe I will
summarize comments, or maybe I will ignore them, or, maybe someone will
suggest the perfect comment gathering solution that fits my particular set of
biases…

mailto:ptcomputingsimplicity@gmail.com

	Introduction
	Main Points
	Comments Section

