Divide And Conquer

When a problem looks to be complicated, a strategy for attacking the problem is “divide & conquer”.
Most programmers know about Divide & Conquer.
What problems look to be complicated?

For one — multi-tasking is considered “hard” by many programmers. Multi-tasking is actually simple,
but needs to be further divided (and conquered). For example, multi-tasking, as it is know today
consists of several sub-problems:

* time-sharing

* memory sharing

* networking, IPC, communication
* concurrency.

Let’s apply Divide & Conquer to the multi-tasking. (1) Time-sharing is needed only by operating
systems, such as Linux, Windows, MacQOS, etc. Let’s throw time-sharing aside. Gnarly problems, like
priority inversion go out the window.

Memory sharing was an issue when memory was expensive. Memory is no longer expensive. Let’s
throw memory-sharing aside. Thread-safety, etc., go out the window.

We are left with networking and concurrency.

Networking is easily reduced to it most basic form — a wire.

Concurrency, at its most basic form is 2 apps communicating across a wire.
We know how to write the two apps —say, using Python, JS, etc., etc..

Yet, we don’t have a “language” for app-to-app communication. There is no popular Python-for-
comms language. There are budding attempts at this kind of language, the most common being
UNIX® bash, but bash is tangled up in complexity — time-sharing and memory sharing and variables
and, etc., etc. ... FBP'is a not-popular-enough attempt as this kind of language, but it tends to be
tangled up with multi-tasking libraries which are tangled up with time-sharing and memory-sharing.
The FBP site references Linda. CPS? and CSP? are text-only attempts to tackle this problem — they
simply demonstrate that the text-only mentality does not extend well to concurrent applications.
TC;DU (Too Complicated ; Didn’t Use).

An acquaintance of mine builds products that measure the health of race horses. His app uses some 37
processors. He uses a language called MicroPython*. He has no problem with multi-tasking. One

Flow-Based Programming <ref>
Continuation Passing Style
Communicating Sequential Processes <ref>
https://micropython.org/

A wWN R

processor, one thread. Node.js? Why bother? Processors are cheap. Linux? Why bother? Processors
are cheap. When he wants to get really complicated, he creates an event loop on a processor, that
checks for incoming events and does some work in the background.

We need a lean language for coordinating a hierarchy of processors®

We need to apply divide & conquer — throw out operating systems, throw out heavy-weight thread
libraries, throw out memory sharing, etc.

Fractal Design

Divide & Conquer and Hierarchy leads to thinking about the Design task as a fractal. Every
Component in a Design “does one thing well” and leaves the rest for further sub-dividing.

Where does this stop? It depends on the application and the Designer’s tolerance for boredom.

As long as the Designer makes the choices clear, expresses the DI, then future readers (Optimization
Engineers, Maintenance Engineers, Testing Engineers, etc.) can understand — and deal with — the
choices made in the design. There is no one way to Design something, there is only “here is how I
chose to design it” documentation (executable documentation would be more precise than static
documentation).

Fractal Desigh Documentation

Q: Is the documentation for a Design, itself a fractal? A binary tree. Each node contains a bite of the
solution and “the rest”. Each Bite describes the paradigm an details used for that bite.

For example:

Problem To Be
Solved

Bite:
uses FPROLOG
paradigm
... more detail ...

Sub-Problem To Be
Solved

Bite:
uses OO Paradigm Sur”%fg;ﬂgifm To
... more detail ...

5 N.B. Ido not use the phrase CPU, since none of the processors are Central.
6 Design Intent.

	Fractal Design
	Fractal Design Documentation

