
1

DSL Prescription

Use DSLs to Express Design Intent
We currently don't have a language for DI (Design Intent, aka Architecture,

aka Business Rules).

Refactoring is a symptom of DI being embedded in code. Corollary: if you
need to refactor, then it is likely that the code hasn't been split into DI and
Implementation.

Excess detail is the antithesis of DI.

Most languages pride themselves on how many features they have, instead of
how few features they have.

When you create DI, you don't want to care how something is implemented
(e.g. Arrays vs. Lists).

Low-level efficiency is the concern of Efficiency Engineers, not Architects.

DSLs are one way to split DI from Implementation.

Automate Everything

Cheat
When possible, cheat.

2

Don't Do Things That the Base Language
Already Does

Let the underlying base language handle the heavy lifting.

Use a DSL Only If It Saves Effort

Design
Can a design be expressed "better" - e.g. more accurately - using a DSL instead

of using a detailed HLL?

Reuse of Architecture
Reuse of DI (Design Intent, aka Architecture) is more important than the reuse

of code.

Code is cheap, thinking is hard.

Keep "business rules" separated from code. Use one language for DI, another
for Implementation.

Coding
Does using a DSL reduce coding time?

Automation - get the DSL to write code. Write programs that write programs.

Maintenance
Does using the DSL reduce maintenance effort?

Can a Maintenance Engineer understand the DI (Design Intent) more quickly?

3

Does the DSL perform D.R.Y. (Don't Repeat Yourself) for you?

Can a Maintenance Engineer perform bug fixes more quickly by tweaking the
DSL?

Can a Maintenance Engineer perform feature upgrades more quickly by
tweaking the DSL?

Write As Little Code As Possible

Create Small DSLs

Reduce Coding Using DSLs

Rely on the Base Language to do the Heavy
Lifting

Use More than Text
Management uses diagrams (e.g. on whiteboards).

Programmers should use diagrams, too.

It is OK to mix diagrams and text in the same document.

4

Diagrams Can Be Easy to Transpile
Diagrams can be easy to transpile.

Think glyphs, not pixels. Use backtracking parsers (e.g. Ohm, PROLOG, etc.).

Gedanken examples:
• How do you know if 4 lines make a box?1
• How do you know if one box is smaller than another box?
• How do you know if the smaller box intersects the edge of the bigger box?
• How do you know if a piece of text is completely inside a box?
• How do you know if an arrow (a glorified line) joins two boxes?
• What if the line is made up of many smaller segments?
• How do you draw a network?
• How do you draw a state machine?2

• What changes when you have ellipses instead of boxes?
• What changes when you have curvy lines instead of straight line

segments?

When All Else Fails. Automate
Generate code, in some way, automatically. Use a pretty printer to make the

code human-readable.

You can always use the generated code as if it were written manually (by
someone else).

1 If you know PROLOG or something like it, how would you declaratively write this
relationship of 4 lines?

2 If you don't already know, refer to Harel's StateCharts paper.

5

Why Management Hated DSLs

DSL (mis-)Perceptions
Management perceive DSL-writing as a sink-hole for time. This impression is

based on the mistaken notion that writing DSLs is the same as writing compilers.

Management sees the up-front cost of creating a DSL. Management knows
how to measure development time (and cost) but doesn't know how to measure
maintenance (understanding) costs.

Management can't hire interchangeable units, called programmers, who
already understand a given DSL. Understanding a DSL requires thinking,
understanding a product design requires thinking, too.

Hiring
At the moment, we don't know how to hire thinkers based on only a resume.

The Profession of Engineering
The profession of Engineering encountered the problem, of hiring thinkers,

decades ago.

The answer was to split the profession into parts.

6

If you attend university courses for 4 years and are rubber-stamped with an
Engineering degree, then you are deemed to be an Engineer.

People who attend trades colleges for 2 years are deemed to be tradespeople.

Others are deemed to be labourers and brick-layers.

For this scheme to work, a method of communication between the strata must
be used - blueprints.

Round Tripping

Round Tripping is Not Used in Engineering
Engineers put their seal (stamp or signature) on designs and are responsible -

in Law - for their designs.

Brick-layers might detect "bugs" or "improvements" in designs, but they never
make substantial changes to blueprints. The changes must be approved by the
signing Engineer(s).

The practice of round-tripping is never used in labour and Engineering.

Round Tripping Is a Symptom
People use round-tripping technology when they believe that the generating

technology doesn't work in all cases.

Round-tripping usually causes accidental complexity.

7

If you think you need round-tripping, then
a. prove that the notation doesn't work for some case
b. fix ithe notation, don't use round-tripping as a band-aid.

Blueprints
Current programming languages cannot be used like blueprints.

Current programming languages expose too much detail to be effectively
used as communication mechanisms, such as blueprints.

In my opinion, the answer lies in isolation.

Drawings
Blueprints are drawings that expose little detail.

Blueprints are composed of simple elements.

Current programming languages expose too many details to be used in the
way that blueprints are used in Engineering and construction.

Scalability
Further explanation:

The main problem in software design is scalability.

We want to "plug" pieces tother like LEGO blocks.

Better scalability implies fewer dependencies.

8

Early hardware people got this "right". They took incredibly complicated
devices (semiconductors made up of various kinds of rust) and built chips / ICs
(integrated circuits).

Chips were black boxes. They had a set of input/output pins. The insides of
the chips were inscrutable - encased in opaque epoxy.

Nothing leaked out of or into a chip except through the pins of the chip.

Properties of a chip were described in easily-measured terms:

• voltage on a pin
• current needed by a pin
• diagram / chart of the outputs, given a set of inputs
• timing.

Then, hardware designers "discovered" that point-to-point wiring between
chips led to non-scalable designs.

They built a (small) hierarchy - chips mounted on boards plugged into
backplanes.

The earliest backplanes were basically point-to-point wiring harnesses. For
example, an early Wang word processor I owned, had a backplane with some 400
pins, allowing a chip on one board to send signals directly to a chip on another
board.

Then, came the S100 bus. It had only 100 pins. It was well defined and
documented. Certain connections were not allowed, even if they could be done
more efficiently as point-to-point connections.

9

The idea of the Bus led to Apple computers and, ultimately, the IBM desktop
computer. (There was more than one Bus definition, but the market shook those
out).

Can software be built like chips? I argue Yes.

We need to build software in hierarchies.

Divide and conquer.

There must be no leakage - of anything - between layers in a hierarchy.
("Anything" includes things like variables, types, control flow, dependencies of
any kind, etc.).

Rigor and Trade-offs
Engineering is about making trade-offs.

Engineers don't strive to prove that a design works - they simply build safety
margins into a design.

The current quest for provable software designs will not lead to Engineering.

What is needed is characterization of the possible trade-offs, e.g. How fast
does it run? How much memory is needed? How much processing power is
needed? What is the fail-safe, the "big red button"? What can be done if it
crashes? Does it have a "known beginning state"? How much will it cost to
design each feature? How much will it cost to test each feature? What is at stake?
How thoroughly does it need to be tested? What is the worst-case throughput?
What is the average throughput? What is the MTBF? Is it single-sourced or
multiply-sourced and what are the implications?

10

Complexity
I see software as a hierarchy of black boxes. The Architect for each box chooses

the best way to describe the design intent of a black box. The Engineer figures
out how to dot the I's and cross the T's. The Production Engineer figures out how
to measure and make the black box "more efficient" and the Coder lays the bricks
to implement the black box.

Black Box Architecture
I see software as a hierarchy3 of black boxes. The Architect for each box

chooses the best way to describe the design intent of a black box. The Engineer
figures out how to dot the I's and cross the T's. The Production Engineer figures
out how to make the black box "more efficient" and the Coder lays the bricks to
implement the black box.

Many Silver Bullets
A good Architect will have a tool-belt full of Silver Bullets. Maybe a problem

is best described in Relational terms, maybe a problem is best described as a State
Machine (as a diagram, yet), maybe a problem can be broken down in a
synchronous manner, etc., etc.

3 Actually, a directed, acyclic graph. Information flows upwards, control (commands)
flows downwards.

11

PSLs
I will use the term PSL instead of DSL to emphasize problem-specific issues

for every problem+solution.

PSL means problem-specific language. The older term, DSL, means domain-
specific language. In my opinion, "domain" is too broad a term, we must focus
down on problems and we must use specialization instead of generalization to
solve specific problems.

	DSL Prescription
	Use DSLs to Express Design Intent
	Automate Everything
	Cheat
	Don't Do Things That the Base Language Already Does

	Use a DSL Only If It Saves Effort
	Write As Little Code As Possible
	Create Small DSLs
	Reduce Coding Using DSLs
	Rely on the Base Language to do the Heavy Lifting

	Use More than Text
	Diagrams Can Be Easy to Transpile

	When All Else Fails. Automate

	Why Management Hated DSLs
	DSL (mis-)Perceptions

	Hiring
	The Profession of Engineering
	Round Tripping
	Round Tripping is Not Used in Engineering
	Round Tripping Is a Symptom

	Blueprints
	Drawings

	Scalability
	Rigor and Trade-offs
	Complexity
	Black Box Architecture
	Many Silver Bullets
	PSLs

