
Statecharts: A Visual
Formalism for Complex

Systems:
David Harel

(communicated by A. Pnueli)
1986

https://www.inf.ed.ac.uk/teaching/courses/seoc/2005_2006/resources/statecharts.pdf

https://www.inf.ed.ac.uk/teaching/courses/seoc/2005_2006/resources/statecharts.pdf

About me:

EE (PEng) 8T1
Also, studied in Core Physics (7T9)

Compilers, OSs, DSLs, embedded systems.

Ran s/w consultancy 25+ years

I first read Harel’s paper in 1987, then applied it to
Injection Molding machines project, to replace PLCs.

Current Interests:
Diagrams-as-Syntax

Expression of design intent,
Software Dev —> Engineering + guarantees.

- 44 pages
- 49 figures
- Hierarchy
- Concurrency
- Communication
- Structured control flow
- 9 sections (meat of notation in sections 2-5)

STATECHARTS:
A VISUL FORMALISM FOR COMPLEX SYSTEMS

The notation was used originally for avionics
(closed source).

This paper describes a Citizen Digital Watch
as its demo.

The Digital Watch is reverse-engineered, and
the diagrams indicate that the watch was

“designed by committee”

1. Introduction

Simple State Diagram

A/B/C are States
alpha/beta/delta/gamma are Events

P is a guard predicate

2. State-levels: Clustering and Refinement

Clustering
A & C moved inside D

All beta transitions combined into a single transition
Children of D (A/C) cannot override parent’s beta transition

(opposite of inheritance)

Different views
of same states

- Running example (Citizen Quartz Multi-Alarm III watch)

Default Entry Point

(i) Enter A by default
(ii) Enter D.A by default

(iii) Enter D by default, then Enter A by default (in D)

State Explosion

“any button pressed” is 3 arrows
“30 sec in alarms-beep” is 3 arrows

Both compressed to 1 arrow (each) through clustering.

Enter ‘time’ by default
When in ‘time’ {
 if “d” is pressed, goto ‘date’
 if “a” is pressed, goto ‘alarm1’
}
When in ‘alarm1’, 4 more “a” presses will goto ‘time’
When in ‘date’, 1 more “d” press, or 2 minutes, will goto ‘time’

History

(a) 1-level “history” chooses K.G or K.F (i.e. K.G.B or K.F.C)
(b) “deep history” uses most recent states

(K.G.A or K.G.B or K.F.C or K.F.D or K.F.E)

 Time Delay

time —>on c down—> wait
wait —>on c up—>time
wait —>on 2 sec—>update

Underspecified?
c can be held down during update
can b be pressed while c down?

Edge-driven or value driven?
“c PUSHED down” vs. “c IS down”.
Is c-up ignored in ‘update’ / ‘time’?

(see semantics paper)

Observation:
Diagrams make some
semantic questions

easier to spot.

Economical Representation

Paper states that (c) is a contradiction

((a) with arrows reversed is a contradiction)

Two Contradictions

1. Exit A on event alpha
2. Enter B on beta

C is underspecified (no default)

3. Orthogonality: Independence and concurrency

Two Simultaneous States

Default state is Y.A.B ^ Y.D.F
Transition from Y.A.C to Y.A.B guarded

by predicate “(in G)”

Fig. 20 is the AND-free equivalent of Fig. 19

Top down specification of watch

Pattern for solving race condition

“b” and “d” pressed “simultaneously”.
Which is seen first?

This pattern sorts the problem out.

Full Diagram for Digital Watch

N.B. ‘beep-test’ is valid in ‘date/time/update’,
but not in ‘wait’ - hence, notch in ‘regular’

N.B. Citizen Documentation claims that
‘beep-test’ and ‘light’ work the same,

yet author found differences.

4. Additional Statechart Features

Features that were not shown in Watch example

- Conditional
- Selection
- Timeout
- Unclustering

5. Actions and activities

Entry & Exit Code

In state C, event alpha will cause execution of
“entry S”, “throughout X” and “entry V”

And B->F will not cause S to be eval’ed again

6. Possible Extensions to the formalism

- Parameterized states
- Overlapping states
- D.R.Y.
- Incorporating temporal logic
- Recursive states
- Probabilistic states

7. Semantics of statecharts

Broadcast
Micro-steps

See [15]

8. Related Work

- state explosion problem
- SDL - not hierarchical
- ATNs
- Petri nets
- CCS
- CSP
- ESTEREL
- Sequence Diagrams

9. Practical experience and implementation

(dated?)
STATEMATE1

I-Logix
IBM Rational

UML 2

+ Glyphs, not pixels, are used in text languages - a-z,A-Z,0-9 etc. +

My Experience

It is easy to compile diagrams. Glyphs == {rect, arrow, text, dot}.
Inference (Prolog, minikanren?, pattern-matching?)

derives all other properties.

Only compiled code (diagrams) is meaningful,
Comments don’t work.

Compilation. (Modeling is not compilation).

Errors are not special. Errors are events. (No need for throw/catch).

Notation is understandable by “management” (kind-of Agile?)

Structured control of state.
(=> structuring other aspects, like spaghetti message-passing)

+ Code uses glyphs not pixels, e.g. a-z, A-Z, 0-9 etc.
++ See also DRAKON

+

++

https:/statecharts.github.io
w3.org/TR/scxml/

Other resources (recently discovered):

My Experience (con’t)

Concurrency can be lifted to another notation.

(http://drakon-editor.sourceforge.net/)

https://statecharts.github.io/
http://statecharts.github.io
http://drakon-editor.sourceforge.net/

paultarvydas@gmail.com

https://github.com/guitarvydas

mailto:paultarvydas@gmail.com

