
Statecharts: A Visual
Formalism for Complex

Systems:
David Harel

(communicated by A. Pnueli)
1986

https://www.inf.ed.ac.uk/teaching/courses/seoc/2005_2006/resources/statecharts.pdf

https://www.inf.ed.ac.uk/teaching/courses/seoc/2005_2006/resources/statecharts.pdf

About me:

EE (PEng) 8T1
Also, studied in Core Physics (7T9)

Compilers, OSs, DSLs, embedded systems.

Ran s/w consultancy 25+ years

I first read Harel’s paper in 1987, then applied it to
Injection Molding machines project, to replace PLCs.

Current Interests:
Diagrams-as-Syntax

Expression of design intent,
Software Dev —> Engineering + guarantees.

- 44 pages
- 49 figures
- Hierarchy
- Concurrency
- Communication
- Structured control flow
- 9 sections (meat of notation in sections 2-5)

STATECHARTS:
A VISUL FORMALISM FOR COMPLEX SYSTEMS

The notation was used originally for avionics
(closed source).

This paper describes a Citizen Digital Watch
as its demo.

The Digital Watch is reverse-engineered, and
the diagrams indicate that the watch was

“designed by committee”

1. Introduction

Simple State Diagram

A/B/C are States
alpha/beta/delta/gamma are Events

P is a guard predicate

2. State-levels: Clustering and Refinement

Clustering
A & C moved inside D

All beta transitions combined into a single transition
Children of D (A/C) cannot override parent’s beta transition

(opposite of inheritance)

Different views
of same states

Skip

- Running example (Citizen Quartz Multi-Alarm III watch)

Skip

Default Entry Point

(i) Enter A by default
(ii) Enter D.A by default

(iii) Enter D by default, then Enter A by default (in D)

State Explosion

“any button pressed” is 3 arrows
“30 sec in alarms-beep” is 3 arrows

Both compressed to 1 arrow (each) through clustering.

Enter ‘time’ by default
When in ‘time’ {
 if “d” is pressed, goto ‘date’
 if “a” is pressed, goto ‘alarm1’
}
When in ‘alarm1’, 4 more “a” presses will goto ‘time’
When in ‘date’, 1 more “d” press, or 2 minutes, will goto ‘time’

History

Enter default (off) if first time
Else enter previous state

Both diagrams have same result

Skip

History

(a) 1-level “history” chooses K.G or K.F (i.e. K.G.B or K.F.C)
(b) “deep history” uses most recent states

(K.G.A or K.G.B or K.F.C or K.F.D or K.F.E)

History

Enter K.G.B or K.F.C or K.F.D or K.F.E

Skip

 Time Delay

time —>on c down—> wait
wait —>on c up—>time
wait —>on 2 sec—>update

Underspecified?
c can be held down during update
can b be pressed while c down?

Edge-driven or value driven?
“c PUSHED down” vs. “c IS down”.
Is c-up ignored in ‘update’ / ‘time’?

(see semantics paper)

Observation:
Diagrams make some
semantic questions

easier to spot.

‘update’ from previous slide with more detail
Answer: c-up is ignored,
c-down is used to move

between substates

Skip

State Exits
(a) ‘update’ will exit if “b” or “c” occurs
(b) ‘update’ will exit if “b” occurs and,

given appropriate condition, if “c” occurs

Skip

‘update1’ exits on c iff in state 1min
and always exits on b.

(see previous slide fig. 16)

Skip

Economical Representation

Paper states that (c) is a contradiction

((a) with arrows reversed is a contradiction)

Two Contradictions

1. Exit A on event alpha
2. Enter B on beta

C is underspecified (no default)

3. Orthogonality: Independence and concurrency

Two Simultaneous States

Default state is Y.A.B ^ Y.D.F
Transition from Y.A.C to Y.A.B guarded

by predicate “(in G)”

Fig. 20 is the AND-free equivalent of Fig. 19

Two Ways to show that Y encompasses A & D

Skip

“An obvious application of orthogonality is in splitting a state in
accordance with its physical subsystems.”

Skip

Entry and exit examples for orthogonal states.
Fig. 24 is a zoomed out version of Fig. 23,

N.B. “AxD” signifying concurrent states A and D

Skip

State ‘stopwatch’ zoomed in.

Skip

Top down specification of watch

Pattern for solving race condition

“b” and “d” pressed “simultaneously”.
Which is seen first?

This pattern sorts the problem out.

Author’s idea of a reasonable
design for ‘time’ vs. ‘beep-test’.

See Fig. 31 for actual.

Skip

Full Diagram for Digital Watch

N.B. ‘beep-test’ is valid in ‘date/time/update’,
but not in ‘wait’ - hence, notch in ‘regular’

N.B. Citizen Documentation claims that
‘beep-test’ and ‘light’ work the same,

yet author found differences.

Anomaly
Pressing “a-down” during ‘beep’ stops

beeping until “a-up”

Skip

4. Additional Statechart Features

Features that were not shown in Watch example

- Conditional
- Selection
- Timeout
- Unclustering

Condition & Selection

Skip

Timeout state

(lower and upper bound)

Skip

Unclustering

Skip

5. Actions and activities

Entry & Exit Code

In state C, event alpha will cause execution of
“entry S”, “throughout X” and “entry V”

And B->F will not cause S to be eval’ed again

6. Possible Extensions to the formalism

- Parameterized states
- Overlapping states
- D.R.Y.
- Incorporating temporal logic
- Recursive states
- Probabilistic states

Parameterized States

Fig. 39 parameterizes Fig. 38
Fig. 40 parameterizes 1000 telephones

Skip

Skip

A1 and A2 are the same.

Skip

Skip

D.R.Y.

Skip

Delta transition “skips over” A1.

Skip

6.3 Incorporating temporal logic
ex. (not(in chime) and not(in dead)) since (in chime.on)

6.4 Recursive and probabilistic statecharts

Skip

7. Semantics of statecharts

Broadcast
Micro-steps

See [15]

Various Semantic Issues

Skip

8. Related Work

- state explosion problem
- SDL - not hierarchical
- ATNs
- Petri nets
- CCS
- CSP
- ESTEREL
- Sequence Diagrams

9. Practical experience and implementation

(dated?)
STATEMATE1

I-Logix
IBM Rational

UML 2

+ Glyphs, not pixels, are used in text languages - a-z,A-Z,0-9 etc. +

My Experience

It is easy to compile diagrams. Glyphs == {rect, arrow, text, dot}.
Inference (Prolog, minikanren?, pattern-matching?)

derives all other properties.

Only compiled code (diagrams) is meaningful,
Comments don’t work.

Compilation. (Modeling is not compilation).

Errors are not special. Errors are events. (No need for throw/catch).

Notation is understandable by “management” (kind-of Agile?)

Structured control of state.
(=> structuring other aspects, like spaghetti message-passing)

+ Code uses glyphs not pixels, e.g. a-z, A-Z, 0-9 etc.
++ See also DRAKON

+

++

https:/statecharts.github.io
w3.org/TR/scxml/

Other resources (recently discovered):

My Experience (con’t)

Concurrency can be lifted to another notation.

(http://drakon-editor.sourceforge.net/)

https://statecharts.github.io/
http://statecharts.github.io
http://drakon-editor.sourceforge.net/

paultarvydas@gmail.com

https://github.com/guitarvydas

mailto:paultarvydas@gmail.com

