Software Components

Example - A Simple System

Fig. 1 contains a diagram of a simple system.

for every q, produce v

for every r, produce w

! for every s, produce x

I “for every g, produce s | i foreveryt, produce y
for every r, produce t | i forevery u, produce z

’
Y [

Fig. 1 A Simple System

The diagram contains one input! port and one output? port.

The diagrams contains two components®. The algorithms for the boxes are
straight-forward?®. The algorithms are stated in terms of what each box outputs

when inputs arrive at that box.

The flow of data within the diagram is shown by arrows.”

It appears that we have plugged two software components together to form a

system.

! The oval labelled "input".

2 The oval labelled "output".

3 Boxes labelled B and C.

* See the dashed callouts pointing to each box.

> The input flows to B and to C. B's output flows to C. C's output flows to the output.

What Happens When Events Arrive?

for every q, produce v
for every r, produce w
for every s, produce x

[“for every q, produce s | i foreveryt, producey
i foreveryr, producet ! i foreveryu producez
/

Fig. 2 An Event Arrives

What happens when an event arrives at the input? See Fig. 2.

The event, "t", is injected into the input.

The algorithms specify exactly what each box does for any given input.
What is the expected output?

Do we see the expected output every time?

Do we see the expected output for every coding of the diagram?

Current State of the Art

We can implement the diagram in pseudo-code.

function B(in) {
if (in == q) {
call C(s)
} else if (in == r) {
call C(t)
} else {

FatalError()
}

Fig. 3 Function B

function C(in)
if (in == q)
output <- v
} else if (in == r) {
output <-w
} else if (in == s) {
output <- x
} else if (in == t) {
output <- vy
} else if (in == u) {
output <- z
} else {
FatalError ()
}

Fig. 4 Function C

Version 1 of the code might call component B first:

main () {
call B(q)
call C(q)
}

Fig. 1 Code Version 1

Version 2 of the code might call C first:

main () {
call C(q
call B(q
b

Fig. 1 Code Version 2

)
)

Final Output
The final output of the preceding routines depends on which version of the

code we use.
Version 1 results in the following code path:

main {
call B(q)
B calls C(s)
output <— x
C returns to B
B returns to main
call C(q)
output <— v
C returns to main

by

main done
Fig. 1 Final Output for Version 1

The final output for Version 1 is x,vP.

While version 2 results in the following code path:

main () {
call C(q)
output <— v
call B(q)
B calls C(s)
output <- x
C returns to B
B returns to main

by

main done
Fig. 1 Final Output for Version 2

The final output for Version 2 if v,x.

®in left to right order

Version 1 and version 2 create different results.

Fig. 5 shows the control flows for code versions 1 and 2.

for every q, produce v
for every r, produce w
for every s, produce x

" “forevery q, produce’s | i foreveryt, produce y
__foreveryr producet | H for every u, produce z

» X, thenv

Fig. 5Control Flow for Versions 1 & 2

The Desired Outcome
We want to plug software components together.7

We want the diagram(s) to mean exactly one thing.

We want the diagram(s) to mean the same thing every time.
This is possible.

I will show the event flow that we desire, in a series of diagrams, then, I will

discuss how this flow can be achieved?®.

R ey

e e — 3___,

AN
LN

W\ \
A
\ O\

Fig. 5 Event q Delivered

Fig. 5 shows event "q" being delivered to B and C.

Nothing else happens, no routines are called.

/

Fig. 5 After Event Delivery 1

7 After all, computer (digital) hardware is plugged together.
8 Even on synchronous operating systems.

Fig. 5 shows what the system looks like after Event Delivery 1 has occurred.

Both, Components B and C have an event "q" at their inputs.

(Neither Component has acted yet).

Two Possible Control Flow Paths
At this point, two control flow paths are possible:

1. Component B runs first.

2. Component C runs first.

I will draw a sequence of diagrams for each path.

input B [

" for every g, produce §
r, produce t

input B c

B consumes q
produces s

q 1:{>°
input B C

q,thens

input B c

i Tforevery q, produce v |
for every r, produce w

for every t, produce y

i for every s, produce x E
i foreveryu,producez !

input B

C consumes q
produces v

8 |:!>
input B C ouput v

input B C —>

i lorevery g, produce v |
for every r, produce w

for every t, produce y

for every s, produce x
i foreveryu,producez !

input B

C consumes s
produces x

s 1:’>
input B c ouput

input B c (v, then)

Fig. 6 Control Flow BC

input

input

input

input

input

input

input

input

input

input

for every q, produce v
for every r, produce w
for every s, produce x
for every t, produce y
for every u, produce z

1

c

C consumes q
produces v

B consumes q
produces s

for every g, produce v
for every r, produce W
for every s, produce x
for every t, produce y
for every u, produce z

C consumes s
produces x

c

C consumes q
produces v

(v, then x)

Fig. 7 Control Flow CB

Final Result
In both cases, Path BC and Path CB, the final result is the same - v is output
first, then x is output.

Achieving the Desired Result

Requirements

All Components have an input queue, onto which incoming events are placed.’
. Components cannot call one another.
+ Components are asynchronous.

A Dispatcher routine decides which Component will run and in what order'.
+ Components are ready if they have events in their input queues.

« Components consume one input event and produce as many output events'! as
necessary in reaction to the input event.

« Components perform a co-routine'? dance with the Dispatcher. When a
Component has processed a single event to completion, the the Component
yields to the Dispatcher. The Dispatcher decides which Component will run

next.'> Components do not decide on the order of dispatching (as with call-return
based code) nor can Components rely on any certain dispatching order.'*

? In a production version, Components also have output queues. That requirement
is a fine point, discussed elsewhere.

19 The order is arbitrary. Components are fully asynchronous.

10 or more. In this example, each component produces exactly 1 output for each
input, but this is not a requirement.

12 FY| - This is easy to accomplish using closures and state-machine mentality.
Discussed later. It is also easy to accomplish using threads, albeit this is overkill.

13 There are many scheduling possibilities. For example, the Dispatcher may invoke
a Component repeatedly until the Component's input queue is empty. Or, the
Dispatcher may choose to work in a round-robin fashion. Fairness is not an issue
(since a Component will eventually go idle when its input queue is empty).

14 Components are truly asynchronous and must survive through any dispatching
order.

10

. Events and data contained in events, are immutable.
. If a Component sends one event to multiple receivers, it must lock the routing

wire. 1

In addition,

+ Components have no parameters'®
« Components have no return values'”
+ There is no syntax for exceptions'®.

Using Threads

Operating system threads' can be used to trivially implement components.

Each Component has a mailbox®® and it sends messages to it parent®!. The

parent routes the messages to the mailboxes of appropriate receivers®,

Note - using threads is overkill. An operating system based thread involves
hardware MMUs?® and separate stacks. Operating system threads implement the

out-dated notion of time-sharing. None of these are actually required to make this

15 |n practical systems, this is not an issue. It becomes an issue for bare metal
systems (no operating system) or systems where Components are distributed along
"very slow" connections. | leave this "problem" to the Architect to solve in a manner
suitable for the application. | simply want to give the Architect the tools to work with to
build reliable systems. The Architect makes guarantees of reliability. This system
provides only the bare minimum tool set.

16 SEND() is the only mechanism for transferring data.

17 SEND() is the only mechanism for transferring data. Data can be transferred to
any number of receivers up and down the line, using SEND(). here is no need for a
specialized RETURN() expression.

18 SEND() is the only mechanism for transferring data. Exceptions are simply data.
Data can be transferred to any receiver using SEND().

19 a.k.a. processes

20 3. k.a. input queue

21 which | all a schematic

22 The routing information is based on the arrows on the diagram(s).
23 Memory Management Units

11

system work.

Fairness
Fairness is not an issue.

Components run a single incoming event to completion, they yield to the
Dispatcher.

This system mimics, more closely, the modern ideas of distributed systems?*.

Thread Safety
Thread Safety is not an issue.

Components cannot share memory, hence, thread safety is not an issue.

Shared Memory
Shared memory is not an issue.
Components cannot share memory.
Components can only send immutable messages.
In very tightly coupled systems, we have the temptation to send pointers to

large blobs of memory. The sender might mutate the blobs of memory before the

message is read by the receiver.

24 e.g. multi-core and internet systems

12

This system makes no guarantees for such situations.

This system® gives the Architect all of the atomic tools necessary to create
systems that work. For example, the memory-sharing issue was encountered 40+
years ago in TTL-based hardware systems. The solution was to use "double-
buffering" and "overrun" flags. If a system could not switch between buffers
quickly enough, then it created an overrun condition. A system which

encountered overrun was deemed simply to be "too slow".

The Architect must make the calculation®® of whether his/her design is "fast

enough" for a given purpose.

Priority Inversion
Priority inversion is not an issue.

I don't use?, nor specify priorities?®, hence, priority inversion cannot
y

happen.

Loops and Recursion

25 We call it Arrowgrams.
26 Calculation is discussed elsewhere.

%7 This is not a flippant statement, regardless of how it sounds. It is based on hard-
won experience with real products. Priorities can (almost) always be designed out of a
system.

28 Note that | do not design priorities into this system of atomic tools.
2 If a system must act using priorities, then the Architect is referred to
literature on hardware priorities’ fully documented some 40+ years ago.

TNMI and IRQ levels.

13

It turns out that Looping (and Recursion) is the exception, not the rule.

Components must not enter long-running loops (or deep recursion).
Components must yield to the Dispatcher. Note that compilers could insert yields
at the bottom of Loops to accomplish this behaviour.

The Dispatcher routine is the only routine in the system that runs a loop. It
loops through a list of ready closures and, randomly, invokes a ready closure.

When the closure finishes®, the Dispatcher simply picks another ready closure to

run.

Dynamic Routing
Dynamic routing is not an issue, because it's not supported.

Dynamic routing used to be called self-modifying code. Selt moditying code is a
bad idea.?!

Closures

Most modern languages provide the concept of closures.> Closures might be
called anonymous functions, or callbacks, or be embedded in concepts such as
futures, etc.

Even C had a way to make closures, using function pointers.

The minimum closure required by this system requires some static, but not

3 e.g. executes a RETURN
31 Especially for maintenance.
32 First explored in the 1950's using Lisp.

14

exported, data, and a temporary stack®. N.B. one stack is enough®.

OO Objects and Blocks are very close, in principle, to the ideas expressed
here. The difference is that I specify closures that run asynchronously whereas
OO uses Objects that perform synchronous call-return and explicit naming of
receivers. I recommend that closures send messages to their parents and do not

refer to each other directly.

In my opinion, and experience, creating separate stacks for each closure and
using MMUs is overkill. I don't wish to use time-sharing in my programs. I

might use time-sharing if [were to build an operating system.

If one imagines that closures contain state-machines, then, this method could

be considered to be a system of communicating state machines. I think in terms
of Clockwork.

Other Features

Reuse
This system emphasizes reuse of Architecture®.

Architecture reuse is more valuable than code reuse.

33 For compiler-generated temporary values.

3 On von Neumann architectures. Maybe one stack is one too many in non-von
Neumann architectures?

35 Object Oriented
3 Elsewhere, | argue that we shouldn't use operating system at all.
37 cut/copy/paste

15

Refactoring

Software Component Architectures composed in this manner can be easily

refactored into other Architectures, simply by moving /deleting/adding arrows.
Components SEND() messages to their parents. Parents contain the routing

tables®®. Parents route messages between their children. This combination

makes refactoring of Architectures easy.

Encapsulation
This system produces a natural hierarchical composition of Architectures.
Parents route messages between their children.
Parents act like Components in all other respects. Parents cannot SEND()

messages to their peer. They can only SEND() messages upwards to their

parents, and route messages of their direct children.

Global Variables
Global variables are not an issue.
Global variables cannot leak beyond the boundaries of their Components.

Global variables are not a problem, if properly encapsulated.

Global Types

38 a.k.a. arrows

16

Global Types in synchronous languages are just as bad as Global Variables in

those languages.
Global anything is bad.

Encapsulation must be applied to every concept in software architecture.

Namespaces
A component has two external namespaces:

e The set of inputs.
e The set of outputs®.

The internal namespace(s) of Components does not leak out.

All input names must be unique within the input namespace.

All output names must be unique within the output namespace.

The same name may appear in, both, the input and output namespaces.

Namespaces are naturally encapsulated in a hierarchical manner, due to

hierarchical encapsulation of Components.

If two Components have exactly the same input namespace and the same output

namespace, then the components are considered to be interchangeable, and "pin

compatible". 4

39| call them "input pins" and "output pins", resp., inspired by TTL hardware
concepts.

40 This is, also, called referential transparency.

17

Encapsulation of Control Flow

Control Flow within Components is naturally encapsulated by the fact that

Components are truly asynchronous.

Control flow begins when a Component is invoked, and, control flow ends
when the Component yields to the Dispatcher.

Control Flow does not leak beyond the boundaries of Components.

18

