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Software Components

Example - A Simple System

Fig. 1 contains a diagram of a simple system.

Fig. 1 A Simple System

The diagram contains one input1 port and one output2 port.  

The diagrams contains two components3.  The algorithms for the boxes are 
straight-forward4.  The algorithms are stated in terms of what each box outputs 
when inputs arrive at that box.

The flow of data within the diagram is shown by arrows.5

It appears that we have plugged two software components together to form a 
system.

1 The oval labelled "input".
2 The oval labelled "output".
3 Boxes labelled B and C.
4 See the dashed callouts pointing to each box.
5 The input flows to B and to C.  B's output flows to C.  C's output flows to the output.
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What Happens When Events Arrive?

Fig. 2  An Event Arrives

What happens when an event arrives at the input?  See Fig. 2.

The event, "t", is injected into the input.

The algorithms specify exactly what each box does for any given input.

What is the expected output?

Do we see the expected output every time?

Do we see the expected output for every coding of the diagram?

Current State of the Art

We can implement the diagram in pseudo-code.

function B(in) {
  if (in == q) {
    call C(s)
} else if (in == r) {
    call C(t)
} else {
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  FatalError()
}
Fig. 3 Function B

function C(in) {
  if (in == q) {
    output <- v
 } else if (in == r) {
    output <- w
 } else if (in == s) {
    output <- x
 } else if (in == t) {
    output <- y
 } else if (in == u) {
    output <- z
} else {
   FatalError ()
}

Fig. 4 Function C

Version 1 of the code might call component B first:

main () {
  call B(q)
  call C(q)
}

Fig. 1 Code Version 1

Version 2 of the code might call C first:

main () {
  call C(q)
  call B(q)
 }
Fig. 1 Code Version 2
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Final Output
The final output of the preceding routines depends on which version of the 

code we use.

Version 1 results in the following code path:

main {
 call B(q)
   B calls C(s)
     output <— x
   C returns to B
  B returns to main
 call C(q)
    output <— v
    C returns to main
}
main done
Fig. 1 Final Output for Version 1

The final output for Version 1 is x,v6.

While version 2 results in the following code path:

main () {
  call C(q)
    output <— v
  call B(q)
    B calls C(s)
      output <- x
      C returns to B
    B returns to main
}
main done
Fig. 1 Final Output for Version 2

The final output for Version 2 if v,x.

6 in left to right order
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Version 1 and version 2 create different results.

Fig. 5 shows the control flows for code versions 1 and 2.

Fig. 5Control Flow for Versions 1 & 2
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The Desired Outcome

We want to plug software components together.7

We want the diagram(s) to mean exactly one thing.

We want the diagram(s) to mean the same thing every time.

This is possible.

I will show the event flow that we desire, in a series of diagrams, then, I will 
discuss how this flow can be achieved8.

Fig. 5 Event q Delivered

Fig. 5 shows event "q" being delivered to B and C.

Nothing else happens, no routines are called.

Fig. 5 After Event Delivery 1

7 After all, computer (digital) hardware is plugged together.
8 Even on synchronous operating systems.
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Fig. 5 shows what the system looks like after Event Delivery 1 has occurred.

Both, Components B and C have an event "q" at their inputs.

(Neither Component has acted yet).

Two Possible Control Flow Paths

At this point, two control flow paths are possible:

1. Component B runs first.
2. Component C runs first.

I will draw a sequence of diagrams for each path.
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Fig. 6 Control Flow BC
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Fig. 7 Control Flow CB

Final Result
In both cases, Path BC and Path CB, the final result is the same - v is output 

first, then x is output.

Achieving the Desired Result

Requirements

All Components have an input queue, onto which incoming events are placed.9
• Components cannot call one another.
• Components are asynchronous.
• A Dispatcher routine decides which Component will run and in what order10.
• Components are ready if they have events in their input queues.
• Components consume one input event and produce as many output events11 as 

necessary in reaction to the input event.
• Components perform a co-routine12 dance with the Dispatcher.  When a 

Component has processed a single event to completion, the the Component 
yields to the Dispatcher.  The Dispatcher decides which Component will run 
next.13 Components do not decide on the order of dispatching (as with call-return 
based code) nor can Components rely on any certain dispatching order.14

9 In a production version, Components also have output queues.  That requirement 
is a fine point, discussed elsewhere.

10 The order is arbitrary.  Components are fully asynchronous.
11 0 or more.  In this example, each component produces exactly 1 output for each 

input, but this is not a requirement.
12 FYI - This is easy to accomplish using closures and state-machine mentality.  

Discussed later.  It is also easy to accomplish using threads, albeit this is overkill.
13 There are many scheduling possibilities.  For example, the Dispatcher may invoke 

a Component repeatedly until the Component's input queue is empty.  Or, the 
Dispatcher may choose to work in a round-robin fashion.  Fairness is not an issue 
(since a Component will eventually go idle when its input queue is empty).

14 Components are truly asynchronous and must survive through any dispatching 
order.
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• Events and data contained in events, are immutable.
• If a Component sends one event to multiple receivers, it must lock the routing 

wire.15

In addition,

• Components have no parameters16

• Components have no return values17

• There is no syntax for exceptions18.

Using Threads
Operating system threads19 can be used to trivially implement components.

Each Component has a mailbox20 and it sends messages to it parent21.  The 
parent routes the messages to the mailboxes of appropriate receivers22.

Note - using threads is overkill.  An operating system based thread involves 
hardware MMUs23 and separate stacks.  Operating system threads implement the 
out-dated notion of time-sharing.  None of these are actually required to make this 

15 In practical systems, this is not an issue.  It becomes an issue for bare metal 
systems (no operating system) or systems where Components are distributed along 
"very slow" connections.  I leave this "problem" to the Architect to solve in a manner 
suitable for the application.  I simply want to give the Architect the tools to work with to 
build reliable systems.  The Architect makes guarantees of reliability.  This system 
provides only the bare minimum tool set.

16 SEND() is the only mechanism for transferring data.
17 SEND() is the only mechanism for transferring data.  Data can be transferred to 

any number of receivers up and down the line, using SEND().  here is no need for a 
specialized RETURN() expression.

18 SEND() is the only mechanism for transferring data.  Exceptions are simply data.  
Data can be transferred to any receiver using SEND().

19 a.k.a. processes
20 a.k.a. input queue
21 which I all a schematic
22 The routing information is based on the arrows on the diagram(s).
23 Memory Management Units
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system work.

Fairness

Fairness is not an issue.

Components run a single incoming event to completion, they yield to the 
Dispatcher.

This system mimics, more closely, the modern ideas of distributed systems24.

Thread Safety

Thread Safety is not an issue.

Components cannot share memory, hence, thread safety is not an issue.

Shared Memory

Shared memory is not an issue.

Components cannot share memory.

Components can only send immutable messages.

In very tightly coupled systems, we have the temptation to send pointers to 
large blobs of memory.  The sender might mutate the blobs of memory before the 
message is read by the receiver.  

24 e.g. multi-core and internet systems
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This system makes no guarantees for such situations.

This system25 gives the Architect all of the atomic tools necessary to create 
systems that work.  For example, the memory-sharing issue was encountered 40+ 
years ago in TTL-based hardware systems.  The solution was to use "double-
buffering" and "overrun" flags.  If a system could not switch between buffers 
quickly enough, then it created an overrun condition.  A system which 
encountered overrun was deemed simply to be "too slow".  

The Architect must make the calculation26 of whether his/her design is "fast 
enough" for a given purpose.

Priority Inversion

Priority inversion is not an issue.

I don't use27, nor specify priorities28, hence, priority inversion cannot 
happen.29

Loops and Recursion

25 We call it Arrowgrams.
26 Calculation is discussed elsewhere.
27 This is not a flippant statement, regardless of how it sounds.  It is based on hard-

won experience with real products.  Priorities can (almost) always be designed out of a 
system.

28 Note that I do not design priorities into this system of atomic tools.
29 If a system must act using priorities, then the Architect is referred to 

literature on hardware priorities1 fully documented some 40+ years ago.

1 NMI and IRQ levels.
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It turns out that Looping (and Recursion) is the exception, not the rule.

Components must not enter long-running loops (or deep recursion).  
Components must yield to the Dispatcher.  Note that compilers could insert yields 
at the bottom of Loops to accomplish this behaviour.

The Dispatcher routine is the only routine in the system that runs a loop.  It 
loops through a list of ready closures and, randomly, invokes a ready closure.  
When the closure finishes30, the Dispatcher simply picks another ready closure to 
run.

Dynamic Routing

Dynamic routing is not an issue, because it's not supported.

Dynamic routing used to be called self-modifying code.  Self modifying code is a 
bad idea.31

Closures

Most modern languages provide the concept of closures.32  Closures might be 
called anonymous functions, or callbacks, or be embedded in concepts such as 
futures, etc.

Even C had a way to make closures, using function pointers.

The minimum closure required by this system requires some static, but not 

30 e.g. executes a RETURN 
31 Especially for maintenance.
32 First explored in the 1950's using Lisp.
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exported, data, and a temporary stack33.  N.B. one stack is enough34.

OO35 Objects and Blocks are very close, in principle, to the ideas expressed 
here.  The difference is that I specify closures that run asynchronously whereas 
OO uses Objects that perform synchronous call-return and explicit naming of 
receivers.  I recommend that closures send messages to their parents and do not 
refer to each other directly.

In my opinion, and experience, creating separate stacks for each closure and 
using MMUs is overkill.  I don't wish to use time-sharing in my programs.  I 
might use time-sharing if I were to build an operating system.36

If one imagines that closures contain state-machines, then, this method could 
be considered to be a system of communicating state machines.   I think in terms 
of Clockwork.

Other Features

Reuse

This system emphasizes reuse of Architecture37.  

Architecture reuse is more valuable than code reuse.

33 For compiler-generated temporary values.
34 On von Neumann architectures.  Maybe one stack is one too many in non-von 

Neumann architectures?
35 Object Oriented
36 Elsewhere, I argue that we shouldn't use operating system at all.
37 cut/copy/paste
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Refactoring

Software Component Architectures composed in this manner can be easily 
refactored into other Architectures, simply by moving/deleting/adding arrows.

Components SEND() messages to their parents. Parents contain the routing 
tables38.  Parents route messages between their children.  This combination 
makes refactoring of Architectures easy.

Encapsulation

This system produces a natural hierarchical composition of Architectures.

Parents route messages between their children.

Parents act like Components in all other respects.  Parents cannot SEND() 
messages to their peer.  They can only SEND() messages upwards to their 
parents, and route messages of their direct children.

Global Variables

Global variables are not an issue.

Global variables cannot leak beyond the boundaries of their Components.

Global variables are not a problem, if properly encapsulated.

Global Types

38 a.k.a. arrows
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Global Types in synchronous languages are just as bad as Global Variables in 
those languages.

Global anything is bad.

Encapsulation must be applied to every concept in software architecture.

Namespaces

A component has two external namespaces:

• The set of inputs.
• The set of outputs39.

The internal namespace(s) of Components does not leak out.

All input names must be unique within the input namespace.

All output names must be unique within the output namespace.

The same name may appear in, both, the input and output namespaces.

Namespaces are naturally encapsulated in a hierarchical manner, due to 
hierarchical encapsulation of Components.

If two Components have exactly the same input namespace and the same output 
namespace, then the components are considered to be interchangeable, and "pin 
compatible".40

39 I call them "input pins" and "output pins", resp., inspired by TTL hardware 
concepts.

40 This is, also, called referential transparency.
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Encapsulation of Control Flow

Control Flow within Components is naturally encapsulated by the fact that 
Components are truly asynchronous.

Control flow begins when a Component is invoked, and, control flow ends 
when the Component yields to the Dispatcher.

Control Flow does not leak beyond the boundaries of Components.


