
1

Factbases

2

Assembly Language for Data Structures

Factbases are to data structures as assembly language is to control flow.

3

Factbases

A factbase is a collection of triples:

relation(object,subject).

or

relation(object,value).

Exercise: Create a factbase from the data in the essay "Rectangle Recognition
Simplified".

Hint:
A line can be represented as:

line(id1,nil).
begin_x(id1,N).
begin_y(id1,M).
end_x(id1,P).
end_y(id1,Q).

Where N, M, P and Q are integer values. A line is declared as existing (with
subject nil). It has a begin point (N,M) and an end-point (P,Q).

Gedanken exercise: Does a line have a width? Does a line have a color? Does a line
have other attributes (e.g. dotted, dashed, solid, etc.)? How would the factbase be
extended to accomodate such attributes?

Gedanken exercise: Does a rectangle-matcher need to know the color of a line? Can it
skip over facts that it finds uninteresting?

Gedanken exercise: Which is simpler - a factbase of atomic facts or a data structure
(e.g. a line object that contains points and attributes)? How do you know where to stop
adding attributes to lines? If the boss comes by a year later and asks for some

4

incongruous information about the drawing (e.g. how many lines are there?), is it faster
(easier) to use an existing factbase or an existing data structure?

Gedanken exercise: What is an atom? How is it different from a composite item?

Gedanken exercise: If you need to add a feature to a codebase, is it faster to understand
the data structures that were used in the codebase, or is it faster to view the list of atoms?

Gedanken exercise: When must we predetermine the structure of data items and use
languages that enforce the use of predetermined data structures? Do we have enough
computing power to structure data at runtime instead of at compile time? PROLOG and
other backtracking / pattern-matching languages make sense of the data and create data
"structures" at runtime. Most other languages insist that one define data structures at
compile time (which leads to Waterfall thought processes).

5

Backtracking

Backtracking is exhaustive search.

PROLOG, miniKanren, pattern-matching, etc., can perform searches.

Backtracking1 makes the searches exhaustive. PROLOG and miniKanren
have built-in backtracking.

Pure PROLOG finds all solutions. Practical PROLOG adds mechanisms (e.g.
Cut) that allow more efficient searching.

1 and looping and recursion, etc.

6

Process

I use the following process: construct assembly language primitives as atoms,
then create structures over the language(s), using, e.g. parsers, as fits the
architecture.

7

See Also
https://www.t3x.org/bits/prolog6.html

https://www.t3x.org/bits/prolog6.html

8

OO is an optimization of factbases.

9

A factbase is an object that contains:
1. data (flat, unordered set of triples)
2. methods (functions that query the data and/or write new data into the

factbase).

An OO object is an object that contains:
1. data / state
2. methods.

An OO object is a mini factbase.

The only difference between an OO object and a Factbase, is that the OO object
has been optimized to reduce the search space - instead of searching the full
factbase, OO methods search/modify only the data that is contained (scoped)
within the object.

10

Factbase methods "skip over" facts that are not need (are uninteresting) to the
method.

The above is the simplest form of duck-typing. A method considers only the
data triples that it is concerned with.

Duck-typing in OO is the same, but optimized. A group of facts (triples) form
a duck-type if a method(s) applies to them.

